|
|
|
@ -8,30 +8,85 @@ import numpy as np
|
|
|
|
|
import cv2
|
|
|
|
|
|
|
|
|
|
def getModel():
|
|
|
|
|
input = Input(shape=[12, 50, 3]) # change this shape to [None,None,3] to enable arbitraty shape input
|
|
|
|
|
input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input
|
|
|
|
|
x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input)
|
|
|
|
|
x = PReLU(shared_axes=[1, 2], name='prelu1')(x)
|
|
|
|
|
x = Activation("relu", name='relu1')(x)
|
|
|
|
|
x = MaxPool2D(pool_size=2)(x)
|
|
|
|
|
x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x)
|
|
|
|
|
x = PReLU(shared_axes=[1, 2], name='prelu2')(x)
|
|
|
|
|
x = Activation("relu", name='relu2')(x)
|
|
|
|
|
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x)
|
|
|
|
|
x = PReLU(shared_axes=[1, 2], name='prelu3')(x)
|
|
|
|
|
x = Activation("relu", name='relu3')(x)
|
|
|
|
|
x = Flatten()(x)
|
|
|
|
|
output = Dense(2)(x)
|
|
|
|
|
output = PReLU(name='prelu4')(output)
|
|
|
|
|
output = Dense(2,name = "dense")(x)
|
|
|
|
|
output = Activation("relu", name='relu4')(output)
|
|
|
|
|
model = Model([input], [output])
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model = getModel()
|
|
|
|
|
model.load_weights("./model/model12.h5")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def getmodel():
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
def gettest_model():
|
|
|
|
|
input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input
|
|
|
|
|
A = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input)
|
|
|
|
|
B = Activation("relu", name='relu1')(A)
|
|
|
|
|
C = MaxPool2D(pool_size=2)(B)
|
|
|
|
|
x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(C)
|
|
|
|
|
x = Activation("relu", name='relu2')(x)
|
|
|
|
|
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x)
|
|
|
|
|
K = Activation("relu", name='relu3')(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = Flatten()(K)
|
|
|
|
|
dense = Dense(2,name = "dense")(x)
|
|
|
|
|
output = Activation("relu", name='relu4')(dense)
|
|
|
|
|
x = Model([input], [output])
|
|
|
|
|
x.load_weights("./model/model12.h5")
|
|
|
|
|
ok = Model([input], [dense])
|
|
|
|
|
|
|
|
|
|
for layer in ok.layers:
|
|
|
|
|
print layer
|
|
|
|
|
|
|
|
|
|
return ok
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def finemappingVertical(image):
|
|
|
|
|
resized = cv2.resize(image,(50,12))
|
|
|
|
|
resized = cv2.resize(image,(66,16))
|
|
|
|
|
resized = resized.astype(np.float)/255
|
|
|
|
|
res= model.predict(np.array([resized]))[0]
|
|
|
|
|
print "keras_predict",res
|
|
|
|
|
res =res*image.shape[1]
|
|
|
|
|
res = res.astype(np.int)
|
|
|
|
|
image = image[0:35,res[0]+4:res[1]]
|
|
|
|
|
H,T = res
|
|
|
|
|
H-=3
|
|
|
|
|
#3 79.86
|
|
|
|
|
#4 79.3
|
|
|
|
|
#5 79.5
|
|
|
|
|
#6 78.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#T
|
|
|
|
|
#T+1 80.9
|
|
|
|
|
#T+2 81.75
|
|
|
|
|
#T+3 81.75
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if H<0:
|
|
|
|
|
H=0
|
|
|
|
|
T+=2;
|
|
|
|
|
|
|
|
|
|
if T>= image.shape[1]-1:
|
|
|
|
|
T= image.shape[1]-1
|
|
|
|
|
|
|
|
|
|
image = image[0:35,H:T+2]
|
|
|
|
|
|
|
|
|
|
image = cv2.resize(image, (int(136), int(36)))
|
|
|
|
|
return image
|