add Prj-PHP
parent
86f043c724
commit
f5b99191b8
@ -0,0 +1,55 @@
|
||||
cmake_minimum_required(VERSION 3.6)
|
||||
project(platescan)
|
||||
|
||||
set(OpenCV_DIR /usr/platescan/opencv-3.3.0/release/)
|
||||
#set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -g -O2 -std=c++11 -fpic -o")
|
||||
#set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
|
||||
set(PHP_CONFIG_DIR /etc/php.d/)
|
||||
set(PHP_CONFIG php-config)
|
||||
set(POST_COMPILE_COMMAND systemctl restart php-fpm)
|
||||
|
||||
find_package(OpenCV 3.3.0 REQUIRED)
|
||||
include_directories( ${OpenCV_INCLUDE_DIRS})
|
||||
include_directories(include)
|
||||
|
||||
|
||||
add_library( # Sets the name of the library.
|
||||
platescan
|
||||
|
||||
# Sets the library as a shared library.
|
||||
SHARED
|
||||
|
||||
# Provides a relative path to your source file(s).
|
||||
main.cpp
|
||||
|
||||
lpr/CNNRecognizer.cpp
|
||||
lpr/FastDeskew.cpp
|
||||
lpr/FineMapping.cpp
|
||||
lpr/Pipeline.cpp
|
||||
lpr/PlateDetection.cpp
|
||||
lpr/PlateSegmentation.cpp
|
||||
lpr/Recognizer.cpp
|
||||
lpr/SegmentationFreeRecognizer.cpp
|
||||
)
|
||||
|
||||
|
||||
target_link_libraries(
|
||||
platescan
|
||||
phpcpp
|
||||
${OpenCV_LIBS}
|
||||
)
|
||||
|
||||
execute_process(COMMAND ${PHP_CONFIG} --extension-dir
|
||||
OUTPUT_VARIABLE LIBRARY_DIR)
|
||||
|
||||
message("Test ${LIBRARY_DIR} failed.")
|
||||
|
||||
add_custom_command(TARGET platescan
|
||||
POST_BUILD
|
||||
COMMAND mv ./libplatescan.so ./platescan.so
|
||||
COMMAND cp -f ./platescan.so ${LIBRARY_DIR}
|
||||
COMMAND ${POST_COMPILE_COMMAND}
|
||||
)
|
@ -0,0 +1,24 @@
|
||||
//
|
||||
// Created by 庾金科 on 21/10/2017.
|
||||
//
|
||||
|
||||
#ifndef SWIFTPR_CNNRECOGNIZER_H
|
||||
#define SWIFTPR_CNNRECOGNIZER_H
|
||||
|
||||
#include "Recognizer.h"
|
||||
namespace pr{
|
||||
class CNNRecognizer: public GeneralRecognizer{
|
||||
public:
|
||||
const int CHAR_INPUT_W = 14;
|
||||
const int CHAR_INPUT_H = 30;
|
||||
|
||||
CNNRecognizer(std::string prototxt,std::string caffemodel);
|
||||
label recognizeCharacter(cv::Mat character);
|
||||
private:
|
||||
cv::dnn::Net net;
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif //SWIFTPR_CNNRECOGNIZER_H
|
@ -0,0 +1,18 @@
|
||||
//
|
||||
// Created by 庾金科 on 22/09/2017.
|
||||
//
|
||||
|
||||
#ifndef SWIFTPR_FASTDESKEW_H
|
||||
#define SWIFTPR_FASTDESKEW_H
|
||||
|
||||
#include <math.h>
|
||||
#include <opencv2/opencv.hpp>
|
||||
namespace pr{
|
||||
|
||||
cv::Mat fastdeskew(cv::Mat skewImage,int blockSize);
|
||||
// cv::Mat spatialTransformer(cv::Mat skewImage);
|
||||
|
||||
}//namepace pr
|
||||
|
||||
|
||||
#endif //SWIFTPR_FASTDESKEW_H
|
@ -0,0 +1,32 @@
|
||||
//
|
||||
// Created by 庾金科 on 22/09/2017.
|
||||
//
|
||||
|
||||
#ifndef SWIFTPR_FINEMAPPING_H
|
||||
#define SWIFTPR_FINEMAPPING_H
|
||||
|
||||
#include <opencv2/opencv.hpp>
|
||||
#include <opencv2/dnn.hpp>
|
||||
|
||||
#include <string>
|
||||
namespace pr{
|
||||
class FineMapping{
|
||||
public:
|
||||
FineMapping();
|
||||
|
||||
|
||||
FineMapping(std::string prototxt,std::string caffemodel);
|
||||
static cv::Mat FineMappingVertical(cv::Mat InputProposal,int sliceNum=15,int upper=0,int lower=-50,int windows_size=17);
|
||||
cv::Mat FineMappingHorizon(cv::Mat FinedVertical,int leftPadding,int rightPadding);
|
||||
|
||||
|
||||
private:
|
||||
cv::dnn::Net net;
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
#endif //SWIFTPR_FINEMAPPING_H
|
@ -0,0 +1,60 @@
|
||||
//
|
||||
// Created by 庾金科 on 22/10/2017.
|
||||
//
|
||||
|
||||
#ifndef SWIFTPR_PIPLINE_H
|
||||
#define SWIFTPR_PIPLINE_H
|
||||
|
||||
#include "PlateDetection.h"
|
||||
#include "PlateSegmentation.h"
|
||||
#include "CNNRecognizer.h"
|
||||
#include "PlateInfo.h"
|
||||
#include "FastDeskew.h"
|
||||
#include "FineMapping.h"
|
||||
#include "Recognizer.h"
|
||||
#include "SegmentationFreeRecognizer.h"
|
||||
|
||||
namespace pr{
|
||||
|
||||
const std::vector<std::string> CH_PLATE_CODE{"京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂",
|
||||
"琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A",
|
||||
"B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X",
|
||||
"Y", "Z","港","学","使","警","澳","挂","军","北","南","广","沈","兰","成","济","海","民","航","空"};
|
||||
|
||||
|
||||
|
||||
const int SEGMENTATION_FREE_METHOD = 0;
|
||||
const int SEGMENTATION_BASED_METHOD = 1;
|
||||
|
||||
class PipelinePR{
|
||||
public:
|
||||
GeneralRecognizer *generalRecognizer;
|
||||
PlateDetection *plateDetection;
|
||||
PlateSegmentation *plateSegmentation;
|
||||
FineMapping *fineMapping;
|
||||
SegmentationFreeRecognizer *segmentationFreeRecognizer;
|
||||
|
||||
PipelinePR(std::string detector_filename,
|
||||
std::string finemapping_prototxt,std::string finemapping_caffemodel,
|
||||
std::string segmentation_prototxt,std::string segmentation_caffemodel,
|
||||
std::string charRecognization_proto,std::string charRecognization_caffemodel,
|
||||
std::string segmentationfree_proto,std::string segmentationfree_caffemodel
|
||||
);
|
||||
~PipelinePR();
|
||||
|
||||
|
||||
|
||||
std::vector<std::string> plateRes;
|
||||
std::vector<PlateInfo> RunPiplineAsImage(cv::Mat plateImage,int method);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
#endif //SWIFTPR_PIPLINE_H
|
@ -0,0 +1,33 @@
|
||||
//
|
||||
// Created by 庾金科 on 20/09/2017.
|
||||
//
|
||||
|
||||
#ifndef SWIFTPR_PLATEDETECTION_H
|
||||
#define SWIFTPR_PLATEDETECTION_H
|
||||
|
||||
#include <opencv2/opencv.hpp>
|
||||
#include <PlateInfo.h>
|
||||
#include <vector>
|
||||
namespace pr{
|
||||
class PlateDetection{
|
||||
public:
|
||||
PlateDetection(std::string filename_cascade);
|
||||
PlateDetection();
|
||||
void LoadModel(std::string filename_cascade);
|
||||
void plateDetectionRough(cv::Mat InputImage,std::vector<pr::PlateInfo> &plateInfos,int min_w=36,int max_w=800);
|
||||
// std::vector<pr::PlateInfo> plateDetectionRough(cv::Mat InputImage,int min_w= 60,int max_h = 400);
|
||||
|
||||
|
||||
// std::vector<pr::PlateInfo> plateDetectionRoughByMultiScaleEdge(cv::Mat InputImage);
|
||||
|
||||
|
||||
|
||||
private:
|
||||
cv::CascadeClassifier cascade;
|
||||
|
||||
|
||||
};
|
||||
|
||||
}// namespace pr
|
||||
|
||||
#endif //SWIFTPR_PLATEDETECTION_H
|
@ -0,0 +1,126 @@
|
||||
//
|
||||
// Created by 庾金科 on 20/09/2017.
|
||||
//
|
||||
|
||||
#ifndef SWIFTPR_PLATEINFO_H
|
||||
#define SWIFTPR_PLATEINFO_H
|
||||
#include <opencv2/opencv.hpp>
|
||||
namespace pr {
|
||||
|
||||
typedef std::vector<cv::Mat> Character;
|
||||
|
||||
enum PlateColor { BLUE, YELLOW, WHITE, GREEN, BLACK,UNKNOWN};
|
||||
enum CharType {CHINESE,LETTER,LETTER_NUMS,INVALID};
|
||||
|
||||
|
||||
class PlateInfo {
|
||||
public:
|
||||
std::vector<std::pair<CharType,cv::Mat>> plateChars;
|
||||
std::vector<std::pair<CharType,cv::Mat>> plateCoding;
|
||||
float confidence = 0;
|
||||
PlateInfo(const cv::Mat &plateData, std::string plateName, cv::Rect plateRect, PlateColor plateType) {
|
||||
licensePlate = plateData;
|
||||
name = plateName;
|
||||
ROI = plateRect;
|
||||
Type = plateType;
|
||||
}
|
||||
PlateInfo(const cv::Mat &plateData, cv::Rect plateRect, PlateColor plateType) {
|
||||
licensePlate = plateData;
|
||||
ROI = plateRect;
|
||||
Type = plateType;
|
||||
}
|
||||
PlateInfo(const cv::Mat &plateData, cv::Rect plateRect) {
|
||||
licensePlate = plateData;
|
||||
ROI = plateRect;
|
||||
}
|
||||
PlateInfo() {
|
||||
|
||||
}
|
||||
|
||||
cv::Mat getPlateImage() {
|
||||
return licensePlate;
|
||||
}
|
||||
|
||||
void setPlateImage(cv::Mat plateImage){
|
||||
licensePlate = plateImage;
|
||||
}
|
||||
|
||||
cv::Rect getPlateRect() {
|
||||
return ROI;
|
||||
}
|
||||
|
||||
void setPlateRect(cv::Rect plateRect) {
|
||||
ROI = plateRect;
|
||||
}
|
||||
cv::String getPlateName() {
|
||||
return name;
|
||||
|
||||
}
|
||||
void setPlateName(cv::String plateName) {
|
||||
name = plateName;
|
||||
}
|
||||
int getPlateType() {
|
||||
return Type;
|
||||
}
|
||||
|
||||
void appendPlateChar(const std::pair<CharType,cv::Mat> &plateChar)
|
||||
{
|
||||
plateChars.push_back(plateChar);
|
||||
}
|
||||
|
||||
void appendPlateCoding(const std::pair<CharType,cv::Mat> &charProb){
|
||||
plateCoding.push_back(charProb);
|
||||
}
|
||||
|
||||
// cv::Mat getPlateChars(int id) {
|
||||
// if(id<PlateChars.size())
|
||||
// return PlateChars[id];
|
||||
// }
|
||||
std::string decodePlateNormal(std::vector<std::string> mappingTable) {
|
||||
std::string decode;
|
||||
for(auto plate:plateCoding) {
|
||||
float *prob = (float *)plate.second.data;
|
||||
if(plate.first == CHINESE) {
|
||||
|
||||
decode += mappingTable[std::max_element(prob,prob+31) - prob];
|
||||
confidence+=*std::max_element(prob,prob+31);
|
||||
|
||||
|
||||
// std::cout<<*std::max_element(prob,prob+31)<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
else if(plate.first == LETTER) {
|
||||
decode += mappingTable[std::max_element(prob+41,prob+65)- prob];
|
||||
confidence+=*std::max_element(prob+41,prob+65);
|
||||
}
|
||||
|
||||
else if(plate.first == LETTER_NUMS) {
|
||||
decode += mappingTable[std::max_element(prob+31,prob+65)- prob];
|
||||
confidence+=*std::max_element(prob+31,prob+65);
|
||||
// std::cout<<*std::max_element(prob+31,prob+65)<<std::endl;
|
||||
|
||||
}
|
||||
else if(plate.first == INVALID)
|
||||
{
|
||||
decode+='*';
|
||||
}
|
||||
|
||||
}
|
||||
name = decode;
|
||||
|
||||
confidence/=7;
|
||||
|
||||
return decode;
|
||||
}
|
||||
|
||||
private:
|
||||
cv::Mat licensePlate;
|
||||
cv::Rect ROI;
|
||||
std::string name ;
|
||||
PlateColor Type;
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
#endif //SWIFTPR_PLATEINFO_H
|
@ -0,0 +1,39 @@
|
||||
//
|
||||
// Created by 庾金科 on 16/10/2017.
|
||||
//
|
||||
|
||||
#ifndef SWIFTPR_PLATESEGMENTATION_H
|
||||
#define SWIFTPR_PLATESEGMENTATION_H
|
||||
|
||||
#include "opencv2/opencv.hpp"
|
||||
#include <opencv2/dnn.hpp>
|
||||
#include "PlateInfo.h"
|
||||
|
||||
namespace pr{
|
||||
|
||||
|
||||
class PlateSegmentation{
|
||||
public:
|
||||
const int PLATE_NORMAL = 6;
|
||||
const int PLATE_NORMAL_GREEN = 7;
|
||||
const int DEFAULT_WIDTH = 20;
|
||||
PlateSegmentation(std::string phototxt,std::string caffemodel);
|
||||
PlateSegmentation(){}
|
||||
void segmentPlatePipline(PlateInfo &plateInfo,int stride,std::vector<cv::Rect> &Char_rects);
|
||||
|
||||
void segmentPlateBySlidingWindows(cv::Mat &plateImage,int windowsWidth,int stride,cv::Mat &respones);
|
||||
void templateMatchFinding(const cv::Mat &respones,int windowsWidth,std::pair<float,std::vector<int>> &candidatePts);
|
||||
void refineRegion(cv::Mat &plateImage,const std::vector<int> &candidatePts,const int padding,std::vector<cv::Rect> &rects);
|
||||
void ExtractRegions(PlateInfo &plateInfo,std::vector<cv::Rect> &rects);
|
||||
cv::Mat classifyResponse(const cv::Mat &cropped);
|
||||
private:
|
||||
cv::dnn::Net net;
|
||||
|
||||
|
||||
// RefineRegion()
|
||||
|
||||
};
|
||||
|
||||
}//namespace pr
|
||||
|
||||
#endif //SWIFTPR_PLATESEGMENTATION_H
|
@ -0,0 +1,23 @@
|
||||
//
|
||||
// Created by 庾金科 on 20/10/2017.
|
||||
//
|
||||
|
||||
|
||||
#ifndef SWIFTPR_RECOGNIZER_H
|
||||
#define SWIFTPR_RECOGNIZER_H
|
||||
|
||||
#include "PlateInfo.h"
|
||||
#include "opencv2/dnn.hpp"
|
||||
namespace pr{
|
||||
typedef cv::Mat label;
|
||||
class GeneralRecognizer{
|
||||
public:
|
||||
virtual label recognizeCharacter(cv::Mat character) = 0;
|
||||
// virtual cv::Mat SegmentationFreeForSinglePlate(cv::Mat plate) = 0;
|
||||
void SegmentBasedSequenceRecognition(PlateInfo &plateinfo);
|
||||
void SegmentationFreeSequenceRecognition(PlateInfo &plateInfo);
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
#endif //SWIFTPR_RECOGNIZER_H
|
@ -0,0 +1,28 @@
|
||||
//
|
||||
// Created by 庾金科 on 28/11/2017.
|
||||
//
|
||||
|
||||
#ifndef SWIFTPR_SEGMENTATIONFREERECOGNIZER_H
|
||||
#define SWIFTPR_SEGMENTATIONFREERECOGNIZER_H
|
||||
|
||||
#include "Recognizer.h"
|
||||
namespace pr{
|
||||
|
||||
|
||||
class SegmentationFreeRecognizer{
|
||||
public:
|
||||
const int CHAR_INPUT_W = 14;
|
||||
const int CHAR_INPUT_H = 30;
|
||||
const int CHAR_LEN = 84;
|
||||
|
||||
SegmentationFreeRecognizer(std::string prototxt,std::string caffemodel);
|
||||
std::pair<std::string,float> SegmentationFreeForSinglePlate(cv::Mat plate,std::vector<std::string> mapping_table);
|
||||
|
||||
|
||||
private:
|
||||
cv::dnn::Net net;
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
#endif //SWIFTPR_SEGMENTATIONFREERECOGNIZER_H
|
@ -0,0 +1,107 @@
|
||||
//
|
||||
// Created by 庾金科 on 26/10/2017.
|
||||
//
|
||||
|
||||
#ifndef SWIFTPR_NIBLACKTHRESHOLD_H
|
||||
#define SWIFTPR_NIBLACKTHRESHOLD_H
|
||||
|
||||
|
||||
#include <opencv2/opencv.hpp>
|
||||
using namespace cv;
|
||||
|
||||
enum LocalBinarizationMethods{
|
||||
BINARIZATION_NIBLACK = 0, //!< Classic Niblack binarization. See @cite Niblack1985 .
|
||||
BINARIZATION_SAUVOLA = 1, //!< Sauvola's technique. See @cite Sauvola1997 .
|
||||
BINARIZATION_WOLF = 2, //!< Wolf's technique. See @cite Wolf2004 .
|
||||
BINARIZATION_NICK = 3 //!< NICK technique. See @cite Khurshid2009 .
|
||||
};
|
||||
|
||||
|
||||
void niBlackThreshold( InputArray _src, OutputArray _dst, double maxValue,
|
||||
int type, int blockSize, double k, int binarizationMethod )
|
||||
{
|
||||
// Input grayscale image
|
||||
Mat src = _src.getMat();
|
||||
CV_Assert(src.channels() == 1);
|
||||
CV_Assert(blockSize % 2 == 1 && blockSize > 1);
|
||||
if (binarizationMethod == BINARIZATION_SAUVOLA) {
|
||||
CV_Assert(src.depth() == CV_8U);
|
||||
}
|
||||
type &= THRESH_MASK;
|
||||
// Compute local threshold (T = mean + k * stddev)
|
||||
// using mean and standard deviation in the neighborhood of each pixel
|
||||
// (intermediate calculations are done with floating-point precision)
|
||||
Mat test;
|
||||
Mat thresh;
|
||||
{
|
||||
// note that: Var[X] = E[X^2] - E[X]^2
|
||||
Mat mean, sqmean, variance, stddev, sqrtVarianceMeanSum;
|
||||
double srcMin, stddevMax;
|
||||
boxFilter(src, mean, CV_32F, Size(blockSize, blockSize),
|
||||
Point(-1,-1), true, BORDER_REPLICATE);
|
||||
sqrBoxFilter(src, sqmean, CV_32F, Size(blockSize, blockSize),
|
||||
Point(-1,-1), true, BORDER_REPLICATE);
|
||||
variance = sqmean - mean.mul(mean);
|
||||
sqrt(variance, stddev);
|
||||
switch (binarizationMethod)
|
||||
{
|
||||
case BINARIZATION_NIBLACK:
|
||||
thresh = mean + stddev * static_cast<float>(k);
|
||||
|
||||
break;
|
||||
case BINARIZATION_SAUVOLA:
|
||||
thresh = mean.mul(1. + static_cast<float>(k) * (stddev / 128.0 - 1.));
|
||||
break;
|
||||
case BINARIZATION_WOLF:
|
||||
minMaxIdx(src, &srcMin,NULL);
|
||||
minMaxIdx(stddev, NULL, &stddevMax);
|
||||
thresh = mean - static_cast<float>(k) * (mean - srcMin - stddev.mul(mean - srcMin) / stddevMax);
|
||||
break;
|
||||
case BINARIZATION_NICK:
|
||||
sqrt(variance + sqmean, sqrtVarianceMeanSum);
|
||||
thresh = mean + static_cast<float>(k) * sqrtVarianceMeanSum;
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, "Unknown binarization method" );
|
||||
break;
|
||||
}
|
||||
thresh.convertTo(thresh, src.depth());
|
||||
|
||||
thresh.convertTo(test, src.depth());
|
||||
//
|
||||
// cv::imshow("imagex",test);
|
||||
// cv::waitKey(0);
|
||||
|
||||
}
|
||||
// Prepare output image
|
||||
_dst.create(src.size(), src.type());
|
||||
Mat dst = _dst.getMat();
|
||||
CV_Assert(src.data != dst.data); // no inplace processing
|
||||
// Apply thresholding: ( pixel > threshold ) ? foreground : background
|
||||
Mat mask;
|
||||
switch (type)
|
||||
{
|
||||
case THRESH_BINARY: // dst = (src > thresh) ? maxval : 0
|
||||
case THRESH_BINARY_INV: // dst = (src > thresh) ? 0 : maxval
|
||||
compare(src, thresh, mask, (type == THRESH_BINARY ? CMP_GT : CMP_LE));
|
||||
dst.setTo(0);
|
||||
dst.setTo(maxValue, mask);
|
||||
break;
|
||||
case THRESH_TRUNC: // dst = (src > thresh) ? thresh : src
|
||||
compare(src, thresh, mask, CMP_GT);
|
||||
src.copyTo(dst);
|
||||
thresh.copyTo(dst, mask);
|
||||
break;
|
||||
case THRESH_TOZERO: // dst = (src > thresh) ? src : 0
|
||||
case THRESH_TOZERO_INV: // dst = (src > thresh) ? 0 : src
|
||||
compare(src, thresh, mask, (type == THRESH_TOZERO ? CMP_GT : CMP_LE));
|
||||
dst.setTo(0);
|
||||
src.copyTo(dst, mask);
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, "Unknown threshold type" );
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
#endif //SWIFTPR_NIBLACKTHRESHOLD_H
|
@ -0,0 +1,19 @@
|
||||
//
|
||||
// Created by 庾金科 on 21/10/2017.
|
||||
//
|
||||
|
||||
#include "CNNRecognizer.h"
|
||||
|
||||
namespace pr{
|
||||
CNNRecognizer::CNNRecognizer(std::string prototxt,std::string caffemodel){
|
||||
net = cv::dnn::readNetFromCaffe(prototxt, caffemodel);
|
||||
}
|
||||
|
||||
label CNNRecognizer::recognizeCharacter(cv::Mat charImage){
|
||||
if(charImage.channels()== 3)
|
||||
cv::cvtColor(charImage,charImage,cv::COLOR_BGR2GRAY);
|
||||
cv::Mat inputBlob = cv::dnn::blobFromImage(charImage, 1/255.0, cv::Size(CHAR_INPUT_W,CHAR_INPUT_H), cv::Scalar(0,0,0),false);
|
||||
net.setInput(inputBlob,"data");
|
||||
return net.forward();
|
||||
}
|
||||
}
|
@ -0,0 +1,108 @@
|
||||
//
|
||||
// Created by Jack Yu on 02/10/2017.
|
||||
//
|
||||
|
||||
|
||||
|
||||
#include "FastDeskew.h"
|
||||
|
||||
namespace pr{
|
||||
const int ANGLE_MIN = 30 ;
|
||||
const int ANGLE_MAX = 150 ;
|
||||
const int PLATE_H = 36;
|
||||
const int PLATE_W = 136;
|
||||
|
||||
int angle(float x,float y)
|
||||
{
|
||||
return atan2(x,y)*180/3.1415;
|
||||
}
|
||||
|
||||
std::vector<float> avgfilter(std::vector<float> angle_list,int windowsSize) {
|
||||
std::vector<float> angle_list_filtered(angle_list.size() - windowsSize + 1);
|
||||
for (int i = 0; i < angle_list.size() - windowsSize + 1; i++) {
|
||||
float avg = 0.00f;
|
||||
for (int j = 0; j < windowsSize; j++) {
|
||||
avg += angle_list[i + j];
|
||||
}
|
||||
avg = avg / windowsSize;
|
||||
angle_list_filtered[i] = avg;
|
||||
}
|
||||
|
||||
return angle_list_filtered;
|
||||
}
|
||||
|
||||
|
||||
void drawHist(std::vector<float> seq){
|
||||
cv::Mat image(300,seq.size(),CV_8U);
|
||||
image.setTo(0);
|
||||
|
||||
for(int i = 0;i<seq.size();i++)
|
||||
{
|
||||
float l = *std::max_element(seq.begin(),seq.end());
|
||||
|
||||
int p = int(float(seq[i])/l*300);
|
||||
|
||||
cv::line(image,cv::Point(i,300),cv::Point(i,300-p),cv::Scalar(255,255,255));
|
||||
}
|
||||
cv::imshow("vis",image);
|
||||
}
|
||||
|
||||
cv::Mat correctPlateImage(cv::Mat skewPlate,float angle,float maxAngle)
|
||||
{
|
||||
cv::Mat dst;
|
||||
cv::Size size_o(skewPlate.cols,skewPlate.rows);
|
||||
int extend_padding = 0;
|
||||
extend_padding = static_cast<int>(skewPlate.rows*tan(cv::abs(angle)/180* 3.14) );
|
||||
cv::Size size(skewPlate.cols + extend_padding ,skewPlate.rows);
|
||||
float interval = abs(sin((angle /180) * 3.14)* skewPlate.rows);
|
||||
cv::Point2f pts1[4] = {cv::Point2f(0,0),cv::Point2f(0,size_o.height),cv::Point2f(size_o.width,0),cv::Point2f(size_o.width,size_o.height)};
|
||||
if(angle>0) {
|
||||
cv::Point2f pts2[4] = {cv::Point2f(interval, 0), cv::Point2f(0, size_o.height),
|
||||
cv::Point2f(size_o.width, 0), cv::Point2f(size_o.width - interval, size_o.height)};
|
||||
cv::Mat M = cv::getPerspectiveTransform(pts1,pts2);
|
||||
cv::warpPerspective(skewPlate,dst,M,size);
|
||||
}
|
||||
else {
|
||||
cv::Point2f pts2[4] = {cv::Point2f(0, 0), cv::Point2f(interval, size_o.height), cv::Point2f(size_o.width-interval, 0),
|
||||
cv::Point2f(size_o.width, size_o.height)};
|
||||
cv::Mat M = cv::getPerspectiveTransform(pts1,pts2);
|
||||
cv::warpPerspective(skewPlate,dst,M,size,cv::INTER_CUBIC);
|
||||
}
|
||||
return dst;
|
||||
}
|
||||
cv::Mat fastdeskew(cv::Mat skewImage,int blockSize){
|
||||
const int FILTER_WINDOWS_SIZE = 5;
|
||||
std::vector<float> angle_list(180);
|
||||
memset(angle_list.data(),0,angle_list.size()*sizeof(int));
|
||||
cv::Mat bak;
|
||||
skewImage.copyTo(bak);
|
||||
if(skewImage.channels() == 3)
|
||||
cv::cvtColor(skewImage,skewImage,cv::COLOR_RGB2GRAY);
|
||||
if(skewImage.channels() == 1)
|
||||
{
|
||||
cv::Mat eigen;
|
||||
cv::cornerEigenValsAndVecs(skewImage,eigen,blockSize,5);
|
||||
for( int j = 0; j < skewImage.rows; j+=blockSize )
|
||||
{ for( int i = 0; i < skewImage.cols; i+=blockSize )
|
||||
{
|
||||
float x2 = eigen.at<cv::Vec6f>(j, i)[4];
|
||||
float y2 = eigen.at<cv::Vec6f>(j, i)[5];
|
||||
int angle_cell = angle(x2,y2);
|
||||
angle_list[(angle_cell + 180)%180]+=1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::vector<float> filtered = avgfilter(angle_list,5);
|
||||
int maxPos = std::max_element(filtered.begin(),filtered.end()) - filtered.begin() + FILTER_WINDOWS_SIZE/2;
|
||||
if(maxPos>ANGLE_MAX)
|
||||
maxPos = (-maxPos+90+180)%180;
|
||||
if(maxPos<ANGLE_MIN)
|
||||
maxPos-=90;
|
||||
maxPos=90-maxPos;
|
||||
cv::Mat deskewed = correctPlateImage(bak, static_cast<float>(maxPos),60.0f);
|
||||
return deskewed;
|
||||
}
|
||||
|
||||
|
||||
|
||||
}//namespace pr
|
@ -0,0 +1,170 @@
|
||||
#include "FineMapping.h"
|
||||
namespace pr{
|
||||
|
||||
const int FINEMAPPING_H = 60 ;
|
||||
const int FINEMAPPING_W = 140;
|
||||
const int PADDING_UP_DOWN = 30;
|
||||
void drawRect(cv::Mat image,cv::Rect rect)
|
||||
{
|
||||
cv::Point p1(rect.x,rect.y);
|
||||
cv::Point p2(rect.x+rect.width,rect.y+rect.height);
|
||||
cv::rectangle(image,p1,p2,cv::Scalar(0,255,0),1);
|
||||
}
|
||||
|
||||
|
||||
FineMapping::FineMapping(std::string prototxt,std::string caffemodel) {
|
||||
net = cv::dnn::readNetFromCaffe(prototxt, caffemodel);
|
||||
|
||||
}
|
||||
|
||||
cv::Mat FineMapping::FineMappingHorizon(cv::Mat FinedVertical,int leftPadding,int rightPadding)
|
||||
{
|
||||
|
||||
// if(FinedVertical.channels()==1)
|
||||
// cv::cvtColor(FinedVertical,FinedVertical,cv::COLOR_GRAY2BGR);
|
||||
cv::Mat inputBlob = cv::dnn::blobFromImage(FinedVertical, 1/255.0, cv::Size(66,16),
|
||||
cv::Scalar(0,0,0),false);
|
||||
|
||||
net.setInput(inputBlob,"data");
|
||||
cv::Mat prob = net.forward();
|
||||
int front = static_cast<int>(prob.at<float>(0,0)*FinedVertical.cols);
|
||||
int back = static_cast<int>(prob.at<float>(0,1)*FinedVertical.cols);
|
||||
front -= leftPadding ;
|
||||
if(front<0) front = 0;
|
||||
back +=rightPadding;
|
||||
if(back>FinedVertical.cols-1) back=FinedVertical.cols - 1;
|
||||
cv::Mat cropped = FinedVertical.colRange(front,back).clone();
|
||||
return cropped;
|
||||
|
||||
|
||||
}
|
||||
std::pair<int,int> FitLineRansac(std::vector<cv::Point> pts,int zeroadd = 0 )
|
||||
{
|
||||
std::pair<int,int> res;
|
||||
if(pts.size()>2)
|
||||
{
|
||||
cv::Vec4f line;
|
||||
cv::fitLine(pts,line,cv::DIST_HUBER,0,0.01,0.01);
|
||||
float vx = line[0];
|
||||
float vy = line[1];
|
||||
float x = line[2];
|
||||
float y = line[3];
|
||||
int lefty = static_cast<int>((-x * vy / vx) + y);
|
||||
int righty = static_cast<int>(((136- x) * vy / vx) + y);
|
||||
res.first = lefty+PADDING_UP_DOWN+zeroadd;
|
||||
res.second = righty+PADDING_UP_DOWN+zeroadd;
|
||||
return res;
|
||||
}
|
||||
res.first = zeroadd;
|
||||
res.second = zeroadd;
|
||||
return res;
|
||||
}
|
||||
|
||||
cv::Mat FineMapping::FineMappingVertical(cv::Mat InputProposal,int sliceNum,int upper,int lower,int windows_size){
|
||||
cv::Mat PreInputProposal;
|
||||
cv::Mat proposal;
|
||||
cv::resize(InputProposal,PreInputProposal,cv::Size(FINEMAPPING_W,FINEMAPPING_H));
|
||||
if(InputProposal.channels() == 3)
|
||||
cv::cvtColor(PreInputProposal,proposal,cv::COLOR_BGR2GRAY);
|
||||
else
|
||||
PreInputProposal.copyTo(proposal);
|
||||
// this will improve some sen
|
||||
cv::Mat kernal = cv::getStructuringElement(cv::MORPH_ELLIPSE,cv::Size(1,3));
|
||||
float diff = static_cast<float>(upper-lower);
|
||||
diff/=static_cast<float>(sliceNum-1);
|
||||
cv::Mat binary_adaptive;
|
||||
std::vector<cv::Point> line_upper;
|
||||
std::vector<cv::Point> line_lower;
|
||||
int contours_nums=0;
|
||||
for(int i = 0 ; i < sliceNum ; i++)
|
||||
{
|
||||
std::vector<std::vector<cv::Point> > contours;
|
||||
float k =lower + i*diff;
|
||||
cv::adaptiveThreshold(proposal,binary_adaptive,255,cv::ADAPTIVE_THRESH_MEAN_C,cv::THRESH_BINARY,windows_size,k);
|
||||
cv::Mat draw;
|
||||
binary_adaptive.copyTo(draw);
|
||||
cv::findContours(binary_adaptive,contours,cv::RETR_EXTERNAL,cv::CHAIN_APPROX_SIMPLE);
|
||||
for(auto contour: contours)
|
||||
{
|
||||
cv::Rect bdbox =cv::boundingRect(contour);
|
||||
float lwRatio = bdbox.height/static_cast<float>(bdbox.width);
|
||||
int bdboxAera = bdbox.width*bdbox.height;
|
||||
if (( lwRatio>0.7&&bdbox.width*bdbox.height>100 && bdboxAera<300)
|
||||
|| (lwRatio>3.0 && bdboxAera<100 && bdboxAera>10))
|
||||
{
|
||||
cv::Point p1(bdbox.x, bdbox.y);
|
||||
cv::Point p2(bdbox.x + bdbox.width, bdbox.y + bdbox.height);
|
||||
line_upper.push_back(p1);
|
||||
line_lower.push_back(p2);
|
||||
contours_nums+=1;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(contours_nums<41)
|
||||
{
|
||||
cv::bitwise_not(InputProposal,InputProposal);
|
||||
cv::Mat kernal = cv::getStructuringElement(cv::MORPH_ELLIPSE,cv::Size(1,5));
|
||||
cv::Mat bak;
|
||||
cv::resize(InputProposal,bak,cv::Size(FINEMAPPING_W,FINEMAPPING_H));
|
||||
cv::erode(bak,bak,kernal);
|
||||
if(InputProposal.channels() == 3)
|
||||
cv::cvtColor(bak,proposal,cv::COLOR_BGR2GRAY);
|
||||
else
|
||||
proposal = bak;
|
||||
int contours_nums=0;
|
||||
for(int i = 0 ; i < sliceNum ; i++)
|
||||
{
|
||||
std::vector<std::vector<cv::Point> > contours;
|
||||
float k =lower + i*diff;
|
||||
cv::adaptiveThreshold(proposal,binary_adaptive,255,cv::ADAPTIVE_THRESH_MEAN_C,cv::THRESH_BINARY,windows_size,k);
|
||||
cv::Mat draw;
|
||||
binary_adaptive.copyTo(draw);
|
||||
cv::findContours(binary_adaptive,contours,cv::RETR_EXTERNAL,cv::CHAIN_APPROX_SIMPLE);
|
||||
for(auto contour: contours)
|
||||
{
|
||||
cv::Rect bdbox =cv::boundingRect(contour);
|
||||
float lwRatio = bdbox.height/static_cast<float>(bdbox.width);
|
||||
int bdboxAera = bdbox.width*bdbox.height;
|
||||
if (( lwRatio>0.7&&bdbox.width*bdbox.height>120 && bdboxAera<300)
|
||||
|| (lwRatio>3.0 && bdboxAera<100 && bdboxAera>10))
|
||||
{
|
||||
|
||||
cv::Point p1(bdbox.x, bdbox.y);
|
||||
cv::Point p2(bdbox.x + bdbox.width, bdbox.y + bdbox.height);
|
||||
line_upper.push_back(p1);
|
||||
line_lower.push_back(p2);
|
||||
contours_nums+=1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
cv::Mat rgb;
|
||||
cv::copyMakeBorder(PreInputProposal, rgb, PADDING_UP_DOWN, PADDING_UP_DOWN, 0, 0, cv::BORDER_REPLICATE);
|
||||
std::pair<int, int> A;
|
||||
std::pair<int, int> B;
|
||||
A = FitLineRansac(line_upper, -1);
|
||||
B = FitLineRansac(line_lower, 1);
|
||||
int leftyB = A.first;
|
||||
int rightyB = A.second;
|
||||
int leftyA = B.first;
|
||||
int rightyA = B.second;
|
||||
int cols = rgb.cols;
|
||||
int rows = rgb.rows;
|
||||
std::vector<cv::Point2f> corners(4);
|
||||
corners[0] = cv::Point2f(cols - 1, rightyA);
|
||||
corners[1] = cv::Point2f(0, leftyA);
|
||||
corners[2] = cv::Point2f(cols - 1, rightyB);
|
||||
corners[3] = cv::Point2f(0, leftyB);
|
||||
std::vector<cv::Point2f> corners_trans(4);
|
||||
corners_trans[0] = cv::Point2f(136, 36);
|
||||
corners_trans[1] = cv::Point2f(0, 36);
|
||||
corners_trans[2] = cv::Point2f(136, 0);
|
||||
corners_trans[3] = cv::Point2f(0, 0);
|
||||
cv::Mat transform = cv::getPerspectiveTransform(corners, corners_trans);
|
||||
cv::Mat quad = cv::Mat::zeros(36, 136, CV_8UC3);
|
||||
cv::warpPerspective(rgb, quad, transform, quad.size());
|
||||
return quad;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -0,0 +1,101 @@
|
||||
//
|
||||
// Created by 庾金科 on 23/10/2017.
|
||||
//
|
||||
|
||||
#include "Pipeline.h"
|
||||
|
||||
|
||||
namespace pr {
|
||||
|
||||
|
||||
|
||||
const int HorizontalPadding = 4;
|
||||
PipelinePR::PipelinePR(std::string detector_filename,
|
||||
std::string finemapping_prototxt, std::string finemapping_caffemodel,
|
||||
std::string segmentation_prototxt, std::string segmentation_caffemodel,
|
||||
std::string charRecognization_proto, std::string charRecognization_caffemodel,
|
||||
std::string segmentationfree_proto,std::string segmentationfree_caffemodel) {
|
||||
plateDetection = new PlateDetection(detector_filename);
|
||||
fineMapping = new FineMapping(finemapping_prototxt, finemapping_caffemodel);
|
||||
plateSegmentation = new PlateSegmentation(segmentation_prototxt, segmentation_caffemodel);
|
||||
generalRecognizer = new CNNRecognizer(charRecognization_proto, charRecognization_caffemodel);
|
||||
segmentationFreeRecognizer = new SegmentationFreeRecognizer(segmentationfree_proto,segmentationfree_caffemodel);
|
||||
|
||||
}
|
||||
|
||||
PipelinePR::~PipelinePR() {
|
||||
|
||||
delete plateDetection;
|
||||
delete fineMapping;
|
||||
delete plateSegmentation;
|
||||
delete generalRecognizer;
|
||||
delete segmentationFreeRecognizer;
|
||||
|
||||
|
||||
}
|
||||
|
||||
std::vector<PlateInfo> PipelinePR:: RunPiplineAsImage(cv::Mat plateImage,int method) {
|
||||
std::vector<PlateInfo> results;
|
||||
std::vector<pr::PlateInfo> plates;
|
||||
plateDetection->plateDetectionRough(plateImage,plates,36,700);
|
||||
|
||||
for (pr::PlateInfo plateinfo:plates) {
|
||||
|
||||
cv::Mat image_finemapping = plateinfo.getPlateImage();
|
||||
image_finemapping = fineMapping->FineMappingVertical(image_finemapping);
|
||||
image_finemapping = pr::fastdeskew(image_finemapping, 5);
|
||||
|
||||
|
||||
|
||||
//Segmentation-based
|
||||
|
||||
if(method==SEGMENTATION_BASED_METHOD)
|
||||
{
|
||||
image_finemapping = fineMapping->FineMappingHorizon(image_finemapping, 2, HorizontalPadding);
|
||||
cv::resize(image_finemapping, image_finemapping, cv::Size(136+HorizontalPadding, 36));
|
||||
// cv::imshow("image_finemapping",image_finemapping);
|
||||
// cv::waitKey(0);
|
||||
plateinfo.setPlateImage(image_finemapping);
|
||||
std::vector<cv::Rect> rects;
|
||||
|
||||
plateSegmentation->segmentPlatePipline(plateinfo, 1, rects);
|
||||
plateSegmentation->ExtractRegions(plateinfo, rects);
|
||||
cv::copyMakeBorder(image_finemapping, image_finemapping, 0, 0, 0, 20, cv::BORDER_REPLICATE);
|
||||
plateinfo.setPlateImage(image_finemapping);
|
||||
generalRecognizer->SegmentBasedSequenceRecognition(plateinfo);
|
||||
plateinfo.decodePlateNormal(pr::CH_PLATE_CODE);
|
||||
|
||||
}
|
||||
//Segmentation-free
|
||||
else if(method==SEGMENTATION_FREE_METHOD)
|
||||
{
|
||||
|
||||
image_finemapping = fineMapping->FineMappingHorizon(image_finemapping, 4, HorizontalPadding+3);
|
||||
|
||||
cv::resize(image_finemapping, image_finemapping, cv::Size(136+HorizontalPadding, 36));
|
||||
// cv::imwrite("./test.png",image_finemapping);
|
||||
// cv::imshow("image_finemapping",image_finemapping);
|
||||
// cv::waitKey(0);
|
||||
plateinfo.setPlateImage(image_finemapping);
|
||||
// std::vector<cv::Rect> rects;
|
||||
|
||||
std::pair<std::string,float> res = segmentationFreeRecognizer->SegmentationFreeForSinglePlate(plateinfo.getPlateImage(),pr::CH_PLATE_CODE);
|
||||
plateinfo.confidence = res.second;
|
||||
plateinfo.setPlateName(res.first);
|
||||
}
|
||||
|
||||
|
||||
|
||||
results.push_back(plateinfo);
|
||||
}
|
||||
|
||||
// for (auto str:results) {
|
||||
// std::cout << str << std::endl;
|
||||
// }
|
||||
return results;
|
||||
|
||||
}//namespace pr
|
||||
|
||||
|
||||
|
||||
}
|
@ -0,0 +1,32 @@
|
||||
#include "PlateDetection.h"
|
||||
#include "util.h"
|
||||
namespace pr{
|
||||
PlateDetection::PlateDetection(std::string filename_cascade){
|
||||
cascade.load(filename_cascade);
|
||||
|
||||
};
|
||||
void PlateDetection::plateDetectionRough(cv::Mat InputImage,std::vector<pr::PlateInfo> &plateInfos,int min_w,int max_w){
|
||||
cv::Mat processImage;
|
||||
cv::cvtColor(InputImage,processImage,cv::COLOR_BGR2GRAY);
|
||||
std::vector<cv::Rect> platesRegions;
|
||||
cv::Size minSize(min_w,min_w/4);
|
||||
cv::Size maxSize(max_w,max_w/4);
|
||||
cascade.detectMultiScale( processImage, platesRegions,
|
||||
1.1, 3, cv::CASCADE_SCALE_IMAGE,minSize,maxSize);
|
||||
for(auto plate:platesRegions)
|
||||
{
|
||||
int zeroadd_w = static_cast<int>(plate.width*0.30);
|
||||
int zeroadd_h = static_cast<int>(plate.height*2);
|
||||
int zeroadd_x = static_cast<int>(plate.width*0.15);
|
||||
int zeroadd_y = static_cast<int>(plate.height*1);
|
||||
plate.x-=zeroadd_x;
|
||||
plate.y-=zeroadd_y;
|
||||
plate.height += zeroadd_h;
|
||||
plate.width += zeroadd_w;
|
||||
cv::Mat plateImage = util::cropFromImage(InputImage,plate);
|
||||
PlateInfo plateInfo(plateImage,plate);
|
||||
plateInfos.push_back(plateInfo);
|
||||
|
||||
}
|
||||
}
|
||||
}//namespace pr
|
@ -0,0 +1,404 @@
|
||||
//
|
||||
// Created by 庾金科 on 16/10/2017.
|
||||
//
|
||||
|
||||
#include "PlateSegmentation.h"
|
||||
#include "niBlackThreshold.h"
|
||||
|
||||
|
||||
//#define DEBUG
|
||||
namespace pr{
|
||||
|
||||
PlateSegmentation::PlateSegmentation(std::string prototxt,std::string caffemodel) {
|
||||
net = cv::dnn::readNetFromCaffe(prototxt, caffemodel);
|
||||
}
|
||||
cv::Mat PlateSegmentation::classifyResponse(const cv::Mat &cropped){
|
||||
cv::Mat inputBlob = cv::dnn::blobFromImage(cropped, 1/255.0, cv::Size(22,22), cv::Scalar(0,0,0),false);
|
||||
net.setInput(inputBlob,"data");
|
||||
return net.forward();
|
||||
}
|
||||
|
||||
void drawHist(float* seq,int size,const char* name){
|
||||
cv::Mat image(300,size,CV_8U);
|
||||
image.setTo(0);
|
||||
float* start =seq;
|
||||
float* end = seq+size;
|
||||
float l = *std::max_element(start,end);
|
||||
for(int i = 0;i<size;i++)
|
||||
{
|
||||
int p = int(float(seq[i])/l*300);
|
||||
cv::line(image,cv::Point(i,300),cv::Point(i,300-p),cv::Scalar(255,255,255));
|
||||
}
|
||||
cv::resize(image,image,cv::Size(600,100));
|
||||
cv::imshow(name,image);
|
||||
}
|
||||
|
||||
inline void computeSafeMargin(int &val,const int &rows){
|
||||
val = std::min(val,rows);
|
||||
val = std::max(val,0);
|
||||
}
|
||||
|
||||
cv::Rect boxFromCenter(const cv::Point center,int left,int right,int top,int bottom,cv::Size bdSize)
|
||||
{
|
||||
cv::Point p1(center.x - left ,center.y - top);
|
||||
cv::Point p2( center.x + right, center.y + bottom);
|
||||
p1.x = std::max(0,p1.x);
|
||||
p1.y = std::max(0,p1.y);
|
||||
p2.x = std::min(p2.x,bdSize.width-1);
|
||||
p2.y = std::min(p2.y,bdSize.height-1);
|
||||
cv::Rect rect(p1,p2);
|
||||
return rect;
|
||||
}
|
||||
|
||||
cv::Rect boxPadding(cv::Rect rect,int left,int right,int top,int bottom,cv::Size bdSize)
|
||||
{
|
||||
|
||||
cv::Point center(rect.x+(rect.width>>1),rect.y + (rect.height>>1));
|
||||
int rebuildLeft = (rect.width>>1 )+ left;
|
||||
int rebuildRight = (rect.width>>1 )+ right;
|
||||
int rebuildTop = (rect.height>>1 )+ top;
|
||||
int rebuildBottom = (rect.height>>1 )+ bottom;
|
||||
return boxFromCenter(center,rebuildLeft,rebuildRight,rebuildTop,rebuildBottom,bdSize);
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
void PlateSegmentation:: refineRegion(cv::Mat &plateImage,const std::vector<int> &candidatePts,const int padding,std::vector<cv::Rect> &rects){
|
||||
int w = candidatePts[5] - candidatePts[4];
|
||||
int cols = plateImage.cols;
|
||||
int rows = plateImage.rows;
|
||||
for(int i = 0 ; i < candidatePts.size() ; i++)
|
||||
{
|
||||
int left = 0;
|
||||
int right = 0 ;
|
||||
|
||||
if(i == 0 ){
|
||||
left= candidatePts[i];
|
||||
right = left+w+padding;
|
||||
}
|
||||
else {
|
||||
left = candidatePts[i] - padding;
|
||||
right = left + w + padding * 2;
|
||||
}
|
||||
|
||||
computeSafeMargin(right,cols);
|
||||
computeSafeMargin(left,cols);
|
||||
cv::Rect roi(left,0,right - left,rows-1);
|
||||
cv::Mat roiImage;
|
||||
plateImage(roi).copyTo(roiImage);
|
||||
|
||||
if (i>=1)
|
||||
{
|
||||
|
||||
cv::Mat roi_thres;
|
||||
// cv::threshold(roiImage,roi_thres,0,255,cv::THRESH_OTSU|cv::THRESH_BINARY);
|
||||
|
||||
niBlackThreshold(roiImage,roi_thres,255,cv::THRESH_BINARY,15,0.27,BINARIZATION_NIBLACK);
|
||||
|
||||
std::vector<std::vector<cv::Point>> contours;
|
||||
cv::findContours(roi_thres,contours,cv::RETR_LIST,cv::CHAIN_APPROX_SIMPLE);
|
||||
cv::Point boxCenter(roiImage.cols>>1,roiImage.rows>>1);
|
||||
|
||||
cv::Rect final_bdbox;
|
||||
cv::Point final_center;
|
||||
int final_dist = INT_MAX;
|
||||
|
||||
|
||||
for(auto contour:contours)
|
||||
{
|
||||
cv::Rect bdbox = cv::boundingRect(contour);
|
||||
cv::Point center(bdbox.x+(bdbox.width>>1),bdbox.y + (bdbox.height>>1));
|
||||
int dist = (center.x - boxCenter.x)*(center.x - boxCenter.x);
|
||||
if(dist<final_dist and bdbox.height > rows>>1)
|
||||
{ final_dist =dist;
|
||||
final_center = center;
|
||||
final_bdbox = bdbox;
|
||||
}
|
||||
}
|
||||
|
||||
//rebuild box
|
||||
if(final_bdbox.height/ static_cast<float>(final_bdbox.width) > 3.5 && final_bdbox.width*final_bdbox.height<10)
|
||||
final_bdbox = boxFromCenter(final_center,8,8,(rows>>1)-3 , (rows>>1) - 2,roiImage.size());
|
||||
else {
|
||||
if(i == candidatePts.size()-1)
|
||||
final_bdbox = boxPadding(final_bdbox, padding/2, padding, padding/2, padding/2, roiImage.size());
|
||||
else
|
||||
final_bdbox = boxPadding(final_bdbox, padding, padding, padding, padding, roiImage.size());
|
||||
|
||||
|
||||
// std::cout<<final_bdbox<<std::endl;
|
||||
// std::cout<<roiImage.size()<<std::endl;
|
||||
#ifdef DEBUG
|
||||
cv::imshow("char_thres",roi_thres);
|
||||
|
||||
cv::imshow("char",roiImage(final_bdbox));
|
||||
cv::waitKey(0);
|
||||
#endif
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
final_bdbox.x += left;
|
||||
|
||||
rects.push_back(final_bdbox);
|
||||
//
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
rects.push_back(roi);
|
||||
}
|
||||
|
||||
// else
|
||||
// {
|
||||
//
|
||||
// }
|
||||
|
||||
// cv::GaussianBlur(roiImage,roiImage,cv::Size(7,7),3);
|
||||
//
|
||||
// cv::imshow("image",roiImage);
|
||||
// cv::waitKey(0);
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
void avgfilter(float *angle_list,int size,int windowsSize) {
|
||||
float *filterd = new float[size];
|
||||
for(int i = 0 ; i < size ; i++) filterd [i] = angle_list[i];
|
||||
// memcpy(filterd,angle_list,size);
|
||||
|
||||
cv::Mat kernal_gaussian = cv::getGaussianKernel(windowsSize,3,CV_32F);
|
||||
float *kernal = (float*)kernal_gaussian.data;
|
||||
// kernal+=windowsSize;
|
||||
int r = windowsSize/2;
|
||||
|
||||
|
||||
|
||||
|
||||
for (int i = 0; i < size; i++) {
|
||||
float avg = 0.00f;
|
||||
for (int j = 0; j < windowsSize; j++) {
|
||||
if(i+j-r>0&&i+j+r<size-1)
|
||||
avg += filterd[i + j-r]*kernal[j];
|
||||
}
|
||||
// avg = avg / windowsSize;
|
||||
angle_list[i] = avg;
|
||||
|
||||
}
|
||||
|
||||
delete filterd;
|
||||
}
|
||||
|
||||
void PlateSegmentation::templateMatchFinding(const cv::Mat &respones,int windowsWidth,std::pair<float,std::vector<int>> &candidatePts){
|
||||
int rows = respones.rows;
|
||||
int cols = respones.cols;
|
||||
|
||||
|
||||
|
||||
float *data = (float*)respones.data;
|
||||
float *engNum_prob = data;
|
||||
float *false_prob = data+cols;
|
||||
float *ch_prob = data+cols*2;
|
||||
|
||||
avgfilter(engNum_prob,cols,5);
|
||||
avgfilter(false_prob,cols,5);
|
||||
// avgfilter(ch_prob,cols,5);
|
||||
std::vector<int> candidate_pts(7);
|
||||
#ifdef DEBUG
|
||||
drawHist(engNum_prob,cols,"engNum_prob");
|
||||
drawHist(false_prob,cols,"false_prob");
|
||||
drawHist(ch_prob,cols,"ch_prob");
|
||||
cv::waitKey(0);
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
int cp_list[7];
|
||||
float loss_selected = -10;
|
||||
|
||||
for(int start = 0 ; start < 20 ; start+=2)
|
||||
for(int width = windowsWidth-5; width < windowsWidth+5 ; width++ ){
|
||||
for(int interval = windowsWidth/2; interval < windowsWidth; interval++)
|
||||
{
|
||||
int cp1_ch = start;
|
||||
int cp2_p0 = cp1_ch+ width;
|
||||
int cp3_p1 = cp2_p0+ width + interval;
|
||||
int cp4_p2 = cp3_p1 + width;
|
||||
int cp5_p3 = cp4_p2 + width+1;
|
||||
int cp6_p4 = cp5_p3 + width+2;
|
||||
int cp7_p5= cp6_p4+ width+2;
|
||||
|
||||
int md1 = (cp1_ch+cp2_p0)>>1;
|
||||
int md2 = (cp2_p0+cp3_p1)>>1;
|
||||
int md3 = (cp3_p1+cp4_p2)>>1;
|
||||
int md4 = (cp4_p2+cp5_p3)>>1;
|
||||
int md5 = (cp5_p3+cp6_p4)>>1;
|
||||
int md6 = (cp6_p4+cp7_p5)>>1;
|
||||
|
||||
|
||||
|
||||
|
||||
if(cp7_p5>=cols)
|
||||
continue;
|
||||
// float loss = ch_prob[cp1_ch]+
|
||||
// engNum_prob[cp2_p0] +engNum_prob[cp3_p1]+engNum_prob[cp4_p2]+engNum_prob[cp5_p3]+engNum_prob[cp6_p4] +engNum_prob[cp7_p5]
|
||||
// + (false_prob[md2]+false_prob[md3]+false_prob[md4]+false_prob[md5]+false_prob[md5] + false_prob[md6]);
|
||||
float loss = ch_prob[cp1_ch]*3 -(false_prob[cp3_p1]+false_prob[cp4_p2]+false_prob[cp5_p3]+false_prob[cp6_p4]+false_prob[cp7_p5]);
|
||||
|
||||
if(loss>loss_selected)
|
||||
{
|
||||
loss_selected = loss;
|
||||
cp_list[0]= cp1_ch;
|
||||
cp_list[1]= cp2_p0;
|
||||
cp_list[2]= cp3_p1;
|
||||
cp_list[3]= cp4_p2;
|
||||
cp_list[4]= cp5_p3;
|
||||
cp_list[5]= cp6_p4;
|
||||
cp_list[6]= cp7_p5;
|
||||
}
|
||||
}
|
||||
}
|
||||
candidate_pts[0] = cp_list[0];
|
||||
candidate_pts[1] = cp_list[1];
|
||||
candidate_pts[2] = cp_list[2];
|
||||
candidate_pts[3] = cp_list[3];
|
||||
candidate_pts[4] = cp_list[4];
|
||||
candidate_pts[5] = cp_list[5];
|
||||
candidate_pts[6] = cp_list[6];
|
||||
|
||||
candidatePts.first = loss_selected;
|
||||
candidatePts.second = candidate_pts;
|
||||
|
||||
};
|
||||
|
||||
|
||||
void PlateSegmentation::segmentPlateBySlidingWindows(cv::Mat &plateImage,int windowsWidth,int stride,cv::Mat &respones){
|
||||
|
||||
|
||||
// cv::resize(plateImage,plateImage,cv::Size(136,36));
|
||||
|
||||
cv::Mat plateImageGray;
|
||||
cv::cvtColor(plateImage,plateImageGray,cv::COLOR_BGR2GRAY);
|
||||
int padding = plateImage.cols-136 ;
|
||||
// int padding = 0 ;
|
||||
int height = plateImage.rows - 1;
|
||||
int width = plateImage.cols - 1 - padding;
|
||||
for(int i = 0 ; i < width - windowsWidth +1 ; i +=stride)
|
||||
{
|
||||
cv::Rect roi(i,0,windowsWidth,height);
|
||||
cv::Mat roiImage = plateImageGray(roi);
|
||||
cv::Mat response = classifyResponse(roiImage);
|
||||
respones.push_back(response);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
respones = respones.t();
|
||||
// std::pair<float,std::vector<int>> images ;
|
||||
//
|
||||
//
|
||||
// std::cout<<images.first<<" ";
|
||||
// for(int i = 0 ; i < images.second.size() ; i++)
|
||||
// {
|
||||
// std::cout<<images.second[i]<<" ";
|
||||
//// cv::line(plateImageGray,cv::Point(images.second[i],0),cv::Point(images.second[i],36),cv::Scalar(255,255,255),1); //DEBUG
|
||||
// }
|
||||
|
||||
// int w = images.second[5] - images.second[4];
|
||||
|
||||
// cv::line(plateImageGray,cv::Point(images.second[5]+w,0),cv::Point(images.second[5]+w,36),cv::Scalar(255,255,255),1); //DEBUG
|
||||
// cv::line(plateImageGray,cv::Point(images.second[5]+2*w,0),cv::Point(images.second[5]+2*w,36),cv::Scalar(255,255,255),1); //DEBUG
|
||||
|
||||
|
||||
// RefineRegion(plateImageGray,images.second,5);
|
||||
|
||||
// std::cout<<w<<std::endl;
|
||||
|
||||
// std::cout<<<<std::endl;
|
||||
|
||||
// cv::resize(plateImageGray,plateImageGray,cv::Size(600,100));
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
// void filterGaussian(cv::Mat &respones,float sigma){
|
||||
//
|
||||
// }
|
||||
|
||||
|
||||
void PlateSegmentation::segmentPlatePipline(PlateInfo &plateInfo,int stride,std::vector<cv::Rect> &Char_rects){
|
||||
cv::Mat plateImage = plateInfo.getPlateImage(); // get src image .
|
||||
cv::Mat plateImageGray;
|
||||
cv::cvtColor(plateImage,plateImageGray,cv::COLOR_BGR2GRAY);
|
||||
//do binarzation
|
||||
//
|
||||
std::pair<float,std::vector<int>> sections ; // segment points variables .
|
||||
|
||||
cv::Mat respones; //three response of every sub region from origin image .
|
||||
segmentPlateBySlidingWindows(plateImage,DEFAULT_WIDTH,1,respones);
|
||||
templateMatchFinding(respones,DEFAULT_WIDTH/stride,sections);
|
||||
for(int i = 0; i < sections.second.size() ; i++)
|
||||
{
|
||||
sections.second[i]*=stride;
|
||||
|
||||
}
|
||||
|
||||
// std::cout<<sections<<std::endl;
|
||||
|
||||
refineRegion(plateImageGray,sections.second,5,Char_rects);
|
||||
#ifdef DEBUG
|
||||
for(int i = 0 ; i < sections.second.size() ; i++)
|
||||
{
|
||||
std::cout<<sections.second[i]<<" ";
|
||||
cv::line(plateImageGray,cv::Point(sections.second[i],0),cv::Point(sections.second[i],36),cv::Scalar(255,255,255),1); //DEBUG
|
||||
}
|
||||
cv::imshow("plate",plateImageGray);
|
||||
cv::waitKey(0);
|
||||
#endif
|
||||
// cv::waitKey(0);
|
||||
|
||||
}
|
||||
|
||||
void PlateSegmentation::ExtractRegions(PlateInfo &plateInfo,std::vector<cv::Rect> &rects){
|
||||
cv::Mat plateImage = plateInfo.getPlateImage();
|
||||
for(int i = 0 ; i < rects.size() ; i++){
|
||||
cv::Mat charImage;
|
||||
plateImage(rects[i]).copyTo(charImage);
|
||||
if(charImage.channels())
|
||||
cv::cvtColor(charImage,charImage,cv::COLOR_BGR2GRAY);
|
||||
// cv::imshow("image",charImage);
|
||||
// cv::waitKey(0);
|
||||
cv::equalizeHist(charImage,charImage);
|
||||
//
|
||||
|
||||
//
|
||||
|
||||
|
||||
std::pair<CharType,cv::Mat> char_instance;
|
||||
if(i == 0 ){
|
||||
|
||||
char_instance.first = CHINESE;
|
||||
|
||||
|
||||
} else if(i == 1){
|
||||
char_instance.first = LETTER;
|
||||
}
|
||||
else{
|
||||
char_instance.first = LETTER_NUMS;
|
||||
}
|
||||
char_instance.second = charImage;
|
||||
plateInfo.appendPlateChar(char_instance);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}//namespace pr
|
@ -0,0 +1,23 @@
|
||||
//
|
||||
// Created by Jack Yu on 22/10/2017.
|
||||
//
|
||||
|
||||
#include "Recognizer.h"
|
||||
|
||||
namespace pr{
|
||||
void GeneralRecognizer::SegmentBasedSequenceRecognition(PlateInfo &plateinfo){
|
||||
for(auto char_instance:plateinfo.plateChars)
|
||||
{
|
||||
std::pair<CharType,cv::Mat> res;
|
||||
if(char_instance.second.rows*char_instance.second.cols>40) {
|
||||
label code_table = recognizeCharacter(char_instance.second);
|
||||
res.first = char_instance.first;
|
||||
code_table.copyTo(res.second);
|
||||
plateinfo.appendPlateCoding(res);
|
||||
} else{
|
||||
res.first = INVALID;
|
||||
plateinfo.appendPlateCoding(res);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,89 @@
|
||||
//
|
||||
// Created by Jack Yu on 28/11/2017.
|
||||
//
|
||||
#include "SegmentationFreeRecognizer.h"
|
||||
|
||||
namespace pr {
|
||||
SegmentationFreeRecognizer::SegmentationFreeRecognizer(std::string prototxt, std::string caffemodel) {
|
||||
net = cv::dnn::readNetFromCaffe(prototxt, caffemodel);
|
||||
}
|
||||
inline int judgeCharRange(int id)
|
||||
{return id<31 || id>63;
|
||||
}
|
||||
std::pair<std::string,float> decodeResults(cv::Mat code_table,std::vector<std::string> mapping_table,float thres)
|
||||
{
|
||||
cv::MatSize mtsize = code_table.size;
|
||||
int sequencelength = mtsize[2];
|
||||
int labellength = mtsize[1];
|
||||
cv::transpose(code_table.reshape(1,1).reshape(1,labellength),code_table);
|
||||
std::string name = "";
|
||||
std::vector<int> seq(sequencelength);
|
||||
std::vector<std::pair<int,float>> seq_decode_res;
|
||||
for(int i = 0 ; i < sequencelength; i++) {
|
||||
float *fstart = ((float *) (code_table.data) + i * labellength );
|
||||
int id = std::max_element(fstart,fstart+labellength) - fstart;
|
||||
seq[i] =id;
|
||||
}
|
||||
|
||||
float sum_confidence = 0;
|
||||
int plate_lenghth = 0 ;
|
||||
for(int i = 0 ; i< sequencelength ; i++)
|
||||
{
|
||||
if(seq[i]!=labellength-1 && (i==0 || seq[i]!=seq[i-1]))
|
||||
{
|
||||
float *fstart = ((float *) (code_table.data) + i * labellength );
|
||||
float confidence = *(fstart+seq[i]);
|
||||
std::pair<int,float> pair_(seq[i],confidence);
|
||||
seq_decode_res.push_back(pair_);
|
||||
}
|
||||
}
|
||||
int i = 0;
|
||||
if (seq_decode_res.size()>1 && judgeCharRange(seq_decode_res[0].first) && judgeCharRange(seq_decode_res[1].first))
|
||||
{
|
||||
i=2;
|
||||
int c = seq_decode_res[0].second<seq_decode_res[1].second;
|
||||
name+=mapping_table[seq_decode_res[c].first];
|
||||
sum_confidence+=seq_decode_res[c].second;
|
||||
plate_lenghth++;
|
||||
}
|
||||
|
||||
for(; i < seq_decode_res.size();i++)
|
||||
{
|
||||
name+=mapping_table[seq_decode_res[i].first];
|
||||
sum_confidence +=seq_decode_res[i].second;
|
||||
plate_lenghth++;
|
||||
}
|
||||
std::pair<std::string,float> res;
|
||||
res.second = sum_confidence/plate_lenghth;
|
||||
res.first = name;
|
||||
return res;
|
||||
|
||||
}
|
||||
std::string decodeResults(cv::Mat code_table,std::vector<std::string> mapping_table)
|
||||
{
|
||||
cv::MatSize mtsize = code_table.size;
|
||||
int sequencelength = mtsize[2];
|
||||
int labellength = mtsize[1];
|
||||
cv::transpose(code_table.reshape(1,1).reshape(1,labellength),code_table);
|
||||
std::string name = "";
|
||||
std::vector<int> seq(sequencelength);
|
||||
for(int i = 0 ; i < sequencelength; i++) {
|
||||
float *fstart = ((float *) (code_table.data) + i * labellength );
|
||||
int id = std::max_element(fstart,fstart+labellength) - fstart;
|
||||
seq[i] =id;
|
||||
}
|
||||
for(int i = 0 ; i< sequencelength ; i++)
|
||||
{
|
||||
if(seq[i]!=labellength-1 && (i==0 || seq[i]!=seq[i-1]))
|
||||
name+=mapping_table[seq[i]];
|
||||
}
|
||||
return name;
|
||||
}
|
||||
std::pair<std::string,float> SegmentationFreeRecognizer::SegmentationFreeForSinglePlate(cv::Mat Image,std::vector<std::string> mapping_table) {
|
||||
cv::transpose(Image,Image);
|
||||
cv::Mat inputBlob = cv::dnn::blobFromImage(Image, 1 / 255.0, cv::Size(40,160));
|
||||
net.setInput(inputBlob, "data");
|
||||
cv::Mat char_prob_mat = net.forward();
|
||||
return decodeResults(char_prob_mat,mapping_table,0.00);
|
||||
}
|
||||
}
|
@ -0,0 +1,67 @@
|
||||
//
|
||||
// Created by Jack Yu on 04/04/2017.
|
||||
//
|
||||
|
||||
#include <opencv2/opencv.hpp>
|
||||
namespace util{
|
||||
template <class T> void swap ( T& a, T& b )
|
||||
{
|
||||
T c(a); a=b; b=c;
|
||||
}
|
||||
template <class T> T min(T& a,T& b )
|
||||
{
|
||||
return a>b?b:a;
|
||||
}
|
||||
|
||||
cv::Mat cropFromImage(const cv::Mat &image,cv::Rect rect){
|
||||
int w = image.cols-1;
|
||||
int h = image.rows-1;
|
||||
rect.x = std::max(rect.x,0);
|
||||
rect.y = std::max(rect.y,0);
|
||||
rect.height = std::min(rect.height,h-rect.y);
|
||||
rect.width = std::min(rect.width,w-rect.x);
|
||||
cv::Mat temp(rect.size(), image.type());
|
||||
cv::Mat cropped;
|
||||
temp = image(rect);
|
||||
temp.copyTo(cropped);
|
||||
return cropped;
|
||||
|
||||
}
|
||||
|
||||
cv::Mat cropBox2dFromImage(const cv::Mat &image,cv::RotatedRect rect)
|
||||
{
|
||||
cv::Mat M, rotated, cropped;
|
||||
float angle = rect.angle;
|
||||
cv::Size rect_size(rect.size.width,rect.size.height);
|
||||
if (rect.angle < -45.) {
|
||||
angle += 90.0;
|
||||
swap(rect_size.width, rect_size.height);
|
||||
}
|
||||
M = cv::getRotationMatrix2D(rect.center, angle, 1.0);
|
||||
cv::warpAffine(image, rotated, M, image.size(), cv::INTER_CUBIC);
|
||||
cv::getRectSubPix(rotated, rect_size, rect.center, cropped);
|
||||
return cropped;
|
||||
}
|
||||
|
||||
cv::Mat calcHist(const cv::Mat &image)
|
||||
{
|
||||
cv::Mat hsv;
|
||||
std::vector<cv::Mat> hsv_planes;
|
||||
cv::cvtColor(image,hsv,cv::COLOR_BGR2HSV);
|
||||
cv::split(hsv,hsv_planes);
|
||||
cv::Mat hist;
|
||||
int histSize = 256;
|
||||
float range[] = {0,255};
|
||||
const float* histRange = {range};
|
||||
cv::calcHist( &hsv_planes[0], 1, 0, cv::Mat(), hist, 1, &histSize, &histRange,true, true);
|
||||
return hist;
|
||||
}
|
||||
|
||||
float computeSimilir(const cv::Mat &A,const cv::Mat &B)
|
||||
{
|
||||
cv::Mat histA,histB;
|
||||
histA = calcHist(A);
|
||||
histB = calcHist(B);
|
||||
return cv::compareHist(histA,histB,CV_COMP_CORREL);
|
||||
}
|
||||
}//namespace util
|
@ -0,0 +1,121 @@
|
||||
//
|
||||
// Created by Coleflowers on 20/06/2018.
|
||||
//
|
||||
#include <phpcpp.h>
|
||||
#include <iostream>
|
||||
|
||||
#include "PlateSegmentation.h"
|
||||
#include "CNNRecognizer.h"
|
||||
#include "Recognizer.h"
|
||||
#include "PlateDetection.h"
|
||||
#include "FastDeskew.h"
|
||||
#include "FineMapping.h"
|
||||
|
||||
|
||||
std::vector<std::string> chars{"京","沪","津","渝","冀","晋","蒙","辽","吉","黑","苏","浙","皖","闽","赣","鲁","豫","鄂","湘","粤","桂","琼","川","贵","云","藏","陕","甘","青","宁","新","0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F","G","H","J","K","L","M","N","P","Q","R","S","T","U","V","W","X","Y","Z"};
|
||||
|
||||
/**
|
||||
* 车牌图片识别
|
||||
* @param imgpath 图片的绝对路径
|
||||
* @return 车牌号 图片路径的图片不存在的话 返回空值
|
||||
*/
|
||||
cv::String scan(const char *imgpath){
|
||||
// 读取图片获取车牌的粗略部分
|
||||
cv::Mat image = cv::imread(imgpath);
|
||||
if(!image.data) {
|
||||
printf("No img data!\n");
|
||||
return "";
|
||||
}
|
||||
pr::PlateDetection plateDetection("/usr/platescan/src/lpr/model/cascade.xml");
|
||||
std::vector<pr::PlateInfo> plates;
|
||||
plateDetection.plateDetectionRough(image,plates);
|
||||
// todo 处理发现的每一个车牌信息
|
||||
// 目前只处理了一组
|
||||
cv::Mat img;
|
||||
for(pr::PlateInfo platex:plates) {
|
||||
// 暂时不保存了
|
||||
//cv::imwrite("res/mmm.png",platex.getPlateImage());
|
||||
img = platex.getPlateImage();
|
||||
}
|
||||
|
||||
// 车牌部分
|
||||
cv::Mat image_finemapping = pr::FineMapping::FineMappingVertical(img);
|
||||
pr::FineMapping finemapper = pr::FineMapping("/usr/platescan/src/lpr/model/HorizonalFinemapping.prototxt","/usr/platescan/src/lpr/model/HorizonalFinemapping.caffemodel");
|
||||
|
||||
//
|
||||
image_finemapping = pr::fastdeskew(image_finemapping, 5);
|
||||
|
||||
// image_finemapping = finemapper.FineMappingHorizon(image_finemapping,0,-3);
|
||||
// Android 代码里这个是
|
||||
// 改了之后部分图片数据精度发生变化 ,比如 字母精度有了,但是汉字又错了
|
||||
image_finemapping = finemapper.FineMappingHorizon(image_finemapping,2,5);
|
||||
// 暂时不保存了
|
||||
//cv::imwrite("res/m222222222.png",image_finemapping);
|
||||
|
||||
// 设置尺寸 识别
|
||||
cv::Mat demo = image_finemapping;
|
||||
cv::resize(demo,demo,cv::Size(136,36));
|
||||
//cv::imwrite("res/m333333.png",demo);
|
||||
|
||||
cv::Mat respones;
|
||||
pr::PlateSegmentation plateSegmentation("/usr/platescan/src/lpr/model/Segmentation.prototxt","/usr/platescan/src/lpr/model/Segmentation.caffemodel");
|
||||
pr::PlateInfo plate;
|
||||
plate.setPlateImage(demo);
|
||||
std::vector<cv::Rect> rects;
|
||||
plateSegmentation.segmentPlatePipline(plate,1,rects);
|
||||
plateSegmentation.ExtractRegions(plate,rects);
|
||||
|
||||
pr::GeneralRecognizer *recognizer = new pr::CNNRecognizer("/usr/platescan/src/lpr/model/CharacterRecognization.prototxt","/usr/platescan/src/lpr/model/CharacterRecognization.caffemodel");
|
||||
recognizer->SegmentBasedSequenceRecognition(plate);
|
||||
//std::cout<<plate.decodePlateNormal(chars)<<std::endl;
|
||||
plate.decodePlateNormal(chars);
|
||||
|
||||
cv::String txt = plate.getPlateName();
|
||||
// printf("res:%s\n", txt.c_str());
|
||||
|
||||
//
|
||||
// 写入结果到文件
|
||||
// FILE *fp;
|
||||
// fp = fopen(resSaveFile, "wb+");
|
||||
// fprintf(fp, "%s", txt.c_str());
|
||||
// fclose(fp);
|
||||
//
|
||||
|
||||
delete(recognizer);
|
||||
return txt;
|
||||
}
|
||||
|
||||
Php::Value myFunction(Php::Parameters ¶ms) {
|
||||
|
||||
std::string str = params[0];
|
||||
const char *str_c = str.c_str();
|
||||
|
||||
cv::String res = scan(str_c);
|
||||
return res.c_str();
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* tell the compiler that the get_module is a pure C function
|
||||
*/
|
||||
extern "C" {
|
||||
|
||||
/**
|
||||
* Function that is called by PHP right after the PHP process
|
||||
* has started, and that returns an address of an internal PHP
|
||||
* strucure with all the details and features of your extension
|
||||
*
|
||||
* @return void* a pointer to an address that is understood by PHP
|
||||
*/
|
||||
PHPCPP_EXPORT void *get_module() {
|
||||
// static(!) Php::Extension object that should stay in memory
|
||||
// for the entire duration of the process (that's why it's static)
|
||||
static Php::Extension extension("platescan", "1.0");
|
||||
|
||||
// @todo add your own functions, classes, namespaces to the extension
|
||||
extension.add<myFunction>("platescan", {Php::ByRef("string", Php::Type::String)});
|
||||
|
||||
// return the extension
|
||||
return extension;
|
||||
}
|
||||
}
|
@ -0,0 +1,2 @@
|
||||
extension=platescan.so
|
||||
|
Binary file not shown.
After Width: | Height: | Size: 810 KiB |
@ -0,0 +1,13 @@
|
||||
<?php
|
||||
//
|
||||
// Created by Coleflowers on 20/06/2018.
|
||||
//
|
||||
|
||||
/**
|
||||
* 车牌识别PHP扩展程序测试
|
||||
*/
|
||||
$path = realpath("demo.png");
|
||||
$res = platescan($path);
|
||||
var_dump($res);
|
||||
|
||||
?>
|
Loading…
Reference in New Issue