Add files via upload

master
Jack Yu 8 years ago committed by GitHub
parent 2ea3d470e4
commit f61e365e2e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,123 @@
input: "data"
input_dim: 1
input_dim: 1
input_dim: 30
input_dim: 14
layer {
name: "conv2d_1"
type: "Convolution"
bottom: "data"
top: "conv2d_1"
convolution_param {
num_output: 32
bias_term: true
pad: 0
kernel_size: 3
stride: 1
}
}
layer {
name: "activation_1"
type: "ReLU"
bottom: "conv2d_1"
top: "activation_1"
}
layer {
name: "max_pooling2d_1"
type: "Pooling"
bottom: "activation_1"
top: "max_pooling2d_1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
pad: 0
}
}
layer {
name: "conv2d_2"
type: "Convolution"
bottom: "max_pooling2d_1"
top: "conv2d_2"
convolution_param {
num_output: 64
bias_term: true
pad: 0
kernel_size: 3
stride: 1
}
}
layer {
name: "activation_2"
type: "ReLU"
bottom: "conv2d_2"
top: "activation_2"
}
layer {
name: "max_pooling2d_2"
type: "Pooling"
bottom: "activation_2"
top: "max_pooling2d_2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
pad: 0
}
}
layer {
name: "conv2d_3"
type: "Convolution"
bottom: "max_pooling2d_2"
top: "conv2d_3"
convolution_param {
num_output: 128
bias_term: true
pad: 0
kernel_size: 2
stride: 1
}
}
layer {
name: "activation_3"
type: "ReLU"
bottom: "conv2d_3"
top: "activation_3"
}
layer {
name: "flatten_1"
type: "Flatten"
bottom: "activation_3"
top: "flatten_1"
}
layer {
name: "dense_1"
type: "InnerProduct"
bottom: "flatten_1"
top: "dense_1"
inner_product_param {
num_output: 256
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "dense_1"
top: "relu2"
}
layer {
name: "dense2"
type: "InnerProduct"
bottom: "relu2"
top: "dense2"
inner_product_param {
num_output: 65
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "dense2"
top: "prob"
}

@ -0,0 +1,95 @@
input: "data"
input_dim: 1
input_dim: 3
input_dim: 16
input_dim: 66
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
num_output: 10
bias_term: true
pad: 0
kernel_size: 3
stride: 1
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "max_pooling2d_3"
type: "Pooling"
bottom: "conv1"
top: "max_pooling2d_3"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
pad: 0
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "max_pooling2d_3"
top: "conv2"
convolution_param {
num_output: 16
bias_term: true
pad: 0
kernel_size: 3
stride: 1
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "conv3"
type: "Convolution"
bottom: "conv2"
top: "conv3"
convolution_param {
num_output: 32
bias_term: true
pad: 0
kernel_size: 3
stride: 1
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "flatten_2"
type: "Flatten"
bottom: "conv3"
top: "flatten_2"
}
layer {
name: "dense"
type: "InnerProduct"
bottom: "flatten_2"
top: "dense"
inner_product_param {
num_output: 2
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "dense"
top: "dense"
}

@ -0,0 +1,318 @@
input: "data"
input_dim: 1
input_dim: 3
input_dim: 160
input_dim: 40
layer {
name: "conv0"
type: "Convolution"
bottom: "data"
top: "conv0"
convolution_param {
num_output: 32
bias_term: true
pad_h: 1
pad_w: 1
kernel_h: 3
kernel_w: 3
stride_h: 1
stride_w: 1
}
}
layer {
name: "bn0"
type: "BatchNorm"
bottom: "conv0"
top: "bn0"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.001
}
}
layer {
name: "bn0_scale"
type: "Scale"
bottom: "bn0"
top: "bn0"
scale_param {
bias_term: true
}
}
layer {
name: "relu0"
type: "ReLU"
bottom: "bn0"
top: "bn0"
}
layer {
name: "pool0"
type: "Pooling"
bottom: "bn0"
top: "pool0"
pooling_param {
pool: MAX
kernel_h: 2
kernel_w: 2
stride_h: 2
stride_w: 2
pad_h: 0
pad_w: 0
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "pool0"
top: "conv1"
convolution_param {
num_output: 64
bias_term: true
pad_h: 1
pad_w: 1
kernel_h: 3
kernel_w: 3
stride_h: 1
stride_w: 1
}
}
layer {
name: "bn1"
type: "BatchNorm"
bottom: "conv1"
top: "bn1"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.001
}
}
layer {
name: "bn1_scale"
type: "Scale"
bottom: "bn1"
top: "bn1"
scale_param {
bias_term: true
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "bn1"
top: "bn1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "bn1"
top: "pool1"
pooling_param {
pool: MAX
kernel_h: 2
kernel_w: 2
stride_h: 2
stride_w: 2
pad_h: 0
pad_w: 0
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
convolution_param {
num_output: 128
bias_term: true
pad_h: 1
pad_w: 1
kernel_h: 3
kernel_w: 3
stride_h: 1
stride_w: 1
}
}
layer {
name: "bn2"
type: "BatchNorm"
bottom: "conv2"
top: "bn2"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.001
}
}
layer {
name: "bn2_scale"
type: "Scale"
bottom: "bn2"
top: "bn2"
scale_param {
bias_term: true
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "bn2"
top: "bn2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "bn2"
top: "pool2"
pooling_param {
pool: MAX
kernel_h: 2
kernel_w: 2
stride_h: 2
stride_w: 2
pad_h: 0
pad_w: 0
}
}
layer {
name: "conv_512_15"
type: "Convolution"
bottom: "pool2"
top: "conv_512_15"
convolution_param {
num_output: 512
bias_term: true
pad_h: 0
pad_w: 0
kernel_h: 1
kernel_w: 5
stride_h: 1
stride_w: 1
}
}
layer {
name: "batch_normalization_1"
type: "BatchNorm"
bottom: "conv_512_15"
top: "batch_normalization_1"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.001
}
}
layer {
name: "batch_normalization_1_scale"
type: "Scale"
bottom: "batch_normalization_1"
top: "batch_normalization_1"
scale_param {
bias_term: true
}
}
layer {
name: "activation_1"
type: "ReLU"
bottom: "batch_normalization_1"
top: "batch_normalization_1"
}
layer {
name: "conv_512_51"
type: "Convolution"
bottom: "batch_normalization_1"
top: "conv_512_51"
convolution_param {
num_output: 512
bias_term: true
pad_h: 0
pad_w: 0
kernel_h: 5
kernel_w: 1
stride_h: 1
stride_w: 1
}
}
layer {
name: "batch_normalization_2"
type: "BatchNorm"
bottom: "conv_512_51"
top: "batch_normalization_2"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.001
}
}
layer {
name: "batch_normalization_2_scale"
type: "Scale"
bottom: "batch_normalization_2"
top: "batch_normalization_2"
scale_param {
bias_term: true
}
}
layer {
name: "activation_2"
type: "ReLU"
bottom: "batch_normalization_2"
top: "batch_normalization_2"
}
layer {
name: "conv_1024_11"
type: "Convolution"
bottom: "batch_normalization_2"
top: "conv_1024_11"
convolution_param {
num_output: 1024
bias_term: true
pad_h: 0
pad_w: 0
kernel_h: 1
kernel_w: 1
stride_h: 1
stride_w: 1
}
}
layer {
name: "batch_normalization_3"
type: "BatchNorm"
bottom: "conv_1024_11"
top: "batch_normalization_3"
batch_norm_param {
moving_average_fraction: 0.99
eps: 0.001
}
}
layer {
name: "batch_normalization_3_scale"
type: "Scale"
bottom: "batch_normalization_3"
top: "batch_normalization_3"
scale_param {
bias_term: true
}
}
layer {
name: "activation_3"
type: "ReLU"
bottom: "batch_normalization_3"
top: "batch_normalization_3"
}
layer {
name: "conv_class_11"
type: "Convolution"
bottom: "batch_normalization_3"
top: "conv_class_11"
convolution_param {
num_output: 84
bias_term: true
pad_h: 0
pad_w: 0
kernel_h: 1
kernel_w: 1
stride_h: 1
stride_w: 1
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "conv_class_11"
top: "prob"
}

@ -0,0 +1,114 @@
input: "data"
input_dim: 1
input_dim: 1
input_dim: 22
input_dim: 22
layer {
name: "conv2d_12"
type: "Convolution"
bottom: "data"
top: "conv2d_12"
convolution_param {
num_output: 16
bias_term: true
pad: 0
kernel_size: 3
stride: 1
}
}
layer {
name: "activation_18"
type: "ReLU"
bottom: "conv2d_12"
top: "activation_18"
}
layer {
name: "max_pooling2d_10"
type: "Pooling"
bottom: "activation_18"
top: "max_pooling2d_10"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
pad: 0
}
}
layer {
name: "conv2d_13"
type: "Convolution"
bottom: "max_pooling2d_10"
top: "conv2d_13"
convolution_param {
num_output: 16
bias_term: true
pad: 0
kernel_size: 3
stride: 1
}
}
layer {
name: "activation_19"
type: "ReLU"
bottom: "conv2d_13"
top: "activation_19"
}
layer {
name: "max_pooling2d_11"
type: "Pooling"
bottom: "activation_19"
top: "max_pooling2d_11"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
pad: 0
}
}
layer {
name: "flatten_6"
type: "Flatten"
bottom: "max_pooling2d_11"
top: "flatten_6"
}
layer {
name: "dense_9"
type: "InnerProduct"
bottom: "flatten_6"
top: "dense_9"
inner_product_param {
num_output: 256
}
}
layer {
name: "dropout_9"
type: "Dropout"
bottom: "dense_9"
top: "dropout_9"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "activation_20"
type: "ReLU"
bottom: "dropout_9"
top: "activation_20"
}
layer {
name: "dense_10"
type: "InnerProduct"
bottom: "activation_20"
top: "dense_10"
inner_product_param {
num_output: 3
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "dense_10"
top: "prob"
}
Loading…
Cancel
Save