import cv2 import numpy as np from .base.base import HamburgerABC from hyperlpr3.common.tools_process import cost def encode_images(image: np.ndarray): image_encode = image / 255.0 if len(image_encode.shape) == 4: image_encode = image_encode.transpose(0, 3, 1, 2) else: image_encode = image_encode.transpose(2, 0, 1) image_encode = image_encode.astype(np.float32) return image_encode class ClassificationORT(HamburgerABC): def __init__(self, onnx_path, *args, **kwargs): import onnxruntime as ort super().__init__(*args, **kwargs) self.session = ort.InferenceSession(onnx_path, None) self.input_config = self.session.get_inputs()[0] self.output_config = self.session.get_outputs()[0] self.input_size = tuple(self.input_config.shape[2:]) # @cost('Cls') def _run_session(self, data) -> np.ndarray: result = self.session.run([self.output_config.name], {self.input_config.name: data}) return result[0] def _postprocess(self, data) -> np.ndarray: return data def _preprocess(self, image) -> np.ndarray: assert len( image.shape) == 3, "The dimensions of the input image object do not match. The input supports a single " \ "image. " # print(self.input_size) image_resize = cv2.resize(image, self.input_size) encode = encode_images(image_resize) encode = encode.astype(np.float32) input_tensor = np.expand_dims(encode, 0) return input_tensor