#coding=utf-8 from keras.layers import Conv2D, Input,MaxPool2D, Reshape,Activation,Flatten, Dense from keras.models import Model, Sequential from keras.layers.advanced_activations import PReLU from keras.optimizers import adam import numpy as np import cv2 def getModel(): input = Input(shape=[12, 50, 3]) # change this shape to [None,None,3] to enable arbitraty shape input x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) x = PReLU(shared_axes=[1, 2], name='prelu1')(x) x = MaxPool2D(pool_size=2)(x) x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x) x = PReLU(shared_axes=[1, 2], name='prelu2')(x) x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) x = PReLU(shared_axes=[1, 2], name='prelu3')(x) x = Flatten()(x) output = Dense(2)(x) output = PReLU(name='prelu4')(output) model = Model([input], [output]) return model model = getModel() model.load_weights("./model/model12.h5") def finemappingVertical(image): resized = cv2.resize(image,(50,12)) resized = resized.astype(np.float)/255 res= model.predict(np.array([resized]))[0] res =res*image.shape[1] res = res.astype(np.int) image = image[0:35,res[0]+4:res[1]] image = cv2.resize(image, (int(136), int(36))) return image