import numpy as np import cv2 import time from functools import wraps def find_the_adjacent_boxes(boxes: list): list_index = list() for i, a in enumerate(boxes): for j, b in enumerate(boxes): if i == j: continue if j in list_index: continue ax, ay, aw, ah = single_xyxy2cxcywh(a) bx, by, bw, bh = single_xyxy2cxcywh(b) dis = l2((ax, ay), (bx, by)) if dis < 2 * aw or dis < 2 * bw: list_index.append(i) list_index.append(j) list_index = set(list_index) return list(list_index) def l2(p1, p2): x0, y0 = p1 x1, y1 = p2 return np.sqrt((x0 - x1) ** 2 + (y0 - y1) ** 2) def single_xyxy2cxcywh(box): x1, y1, x2, y2 = box w = x2 - x1 h = y2 - y1 x = x1 + w / 2 y = y1 + h / 2 return x, y, w, h def sigmoid(x): return 1 / (1 + np.exp(-x)) def xywh2xyxy(x): # Convert [x, y, w, h] to [x1, y1, x2, y2] y = np.copy(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y return y def process(input, mask, anchors, size): anchors = [anchors[i] for i in mask] grid_h, grid_w = map(int, input.shape[0:2]) box_confidence = sigmoid(input[..., 4]) box_confidence = np.expand_dims(box_confidence, axis=-1) box_class_probs = sigmoid(input[..., 5:]) box_xy = sigmoid(input[..., :2]) * 2 - 0.5 col = np.tile(np.arange(0, grid_w), grid_h).reshape(-1, grid_w) row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_w) col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2) row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2) grid = np.concatenate((col, row), axis=-1) box_xy += grid box_xy *= (int(size[1] / grid_h), int(size[0] / grid_w)) box_wh = pow(sigmoid(input[..., 2:4]) * 2, 2) box_wh = box_wh * anchors box = np.concatenate((box_xy, box_wh), axis=-1) return box, box_confidence, box_class_probs def filter_boxes(boxes, box_confidences, box_class_probs, box_threshold, nms_threshold): """Filter boxes with box threshold. It's a bit different with origin yolov5 post process! # Arguments boxes: ndarray, boxes of objects. box_confidences: ndarray, confidences of objects. box_class_probs: ndarray, class_probs of objects. # Returns boxes: ndarray, filtered boxes. classes: ndarray, classes for boxes. scores: ndarray, scores for boxes. """ boxes = boxes.reshape(-1, 4) box_confidences = box_confidences.reshape(-1) box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1]) _box_pos = np.where(box_confidences >= box_threshold) boxes = boxes[_box_pos] box_confidences = box_confidences[_box_pos] box_class_probs = box_class_probs[_box_pos] class_max_score = np.max(box_class_probs, axis=-1) classes = np.argmax(box_class_probs, axis=-1) _class_pos = np.where(class_max_score * box_confidences >= box_threshold) boxes = boxes[_class_pos] classes = classes[_class_pos] scores = (class_max_score * box_confidences)[_class_pos] return boxes, classes, scores def nms_boxes(boxes, scores, nms_threshold): """Suppress non-maximal boxes. # Arguments boxes: ndarray, boxes of objects. scores: ndarray, scores of objects. # Returns keep: ndarray, index of effective boxes. """ x = boxes[:, 0] y = boxes[:, 1] w = boxes[:, 2] - boxes[:, 0] h = boxes[:, 3] - boxes[:, 1] areas = w * h order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x[i], x[order[1:]]) yy1 = np.maximum(y[i], y[order[1:]]) xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]]) yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]]) w1 = np.maximum(0.0, xx2 - xx1 + 0.00001) h1 = np.maximum(0.0, yy2 - yy1 + 0.00001) inter = w1 * h1 ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= nms_threshold)[0] order = order[inds + 1] keep = np.array(keep) return keep def restore_bound_box(boxes: list, ratio: tuple, pad_size: tuple): if len(boxes) > 0: pad_width, pad_height = pad_size boxes_array = np.asarray(boxes) # print(boxes_array) boxes_array[:, 0] = (boxes_array[:, 0] - pad_width) / ratio[0] boxes_array[:, 1] = (boxes_array[:, 1] - pad_height) / ratio[1] boxes_array[:, 2] = (boxes_array[:, 2] - pad_width) / ratio[0] boxes_array[:, 3] = (boxes_array[:, 3] - pad_height) / ratio[1] # print(boxes_array) boxes = boxes_array.tolist() return boxes def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)): # Resize and pad image while meeting stride-multiple constraints shape = im.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return im, ratio, (dw, dh) def cost(tag=''): try: ''' :param tag: 装饰器的参数 ''' from loguru import logger def wrapper(fn): @wraps(fn) def wrapper_use_time(*args, **kw): ''' 函数传参方式 fn(arg1, arg2, param1=a, param2=b) :param args: 位置参数(arg1, arg2, ....) 传参方式 fn(arg1, arg2, ...) :param kw: 字典参数{param1=a, param2=b, .....} 传参方式 fn(param1=a, param2=b, ....) :return: ''' t1 = time.time() try: res = fn(*args, **kw) except Exception as e: logger.error(f"@use_time %s(%s) execute error" % (fn.__name__, tag)) return None else: t2 = time.time() logger.info(f"{tag}@UseTime: {t2 - t1}") return res return wrapper_use_time return wrapper except Exception as err: print(err) def align_box(imgs, bbox, size=96, scale_factor=1.0, center_bias=0, borderValue=(0, 0, 0)): bias_x = (-1 + 2 * np.random.sample()) * center_bias bias_y = (-1 + 2 * np.random.sample()) * center_bias b_x1, b_y1, b_x2, b_y2 = bbox cx, cy = (b_x1 + b_x2) // 2, (b_y1 + b_y2) // 2 w = b_x2 - b_x1 h = b_y2 - b_y1 cx += w * bias_x cy += h * bias_y base_r = max(w, h) j_x = 0 j_y = 0 j_r = 0 base_r += j_r r = int(base_r / 2 * scale_factor) cy -= int(base_r * 0) cx += j_x cy += j_y x1, y1, x2, y2 = cx - r, cy - r, cx + r, cy + r x3, y3 = cx - r, cy + r _x1, _y1, _x2, _y2, _x3, _y3 = [0, 0, size, size, 0, size] src = np.array([x1, y1, x2, y2, x3, y3], dtype=np.float32).reshape(3, 2) sv = np.asarray([[b_x1, b_y1, 1], [b_x2, b_y2, 1]]) dst = np.array([_x1, _y1, _x2, _y2, _x3, _y3], dtype=np.float32).reshape(3, 2) assert src.dtype == np.float32 assert dst.dtype == np.float32 assert src.shape == (3, 2) assert dst.shape == (3, 2) mat = cv2.getAffineTransform(src, dst) p = sv.dot(mat.T).reshape(-1) if type(imgs) == list: imgs = [cv2.warpAffine(img, mat, (size, size), borderValue=borderValue) for img in imgs] else: imgs = cv2.warpAffine(imgs, mat, (size, size), borderValue=borderValue) return imgs, p, mat def get_rotate_crop_image(img, points): ''' img_height, img_width = img.shape[0:2] left = int(np.min(points[:, 0])) right = int(np.max(points[:, 0])) top = int(np.min(points[:, 1])) bottom = int(np.max(points[:, 1])) img_crop = img[top:bottom, left:right, :].copy() points[:, 0] = points[:, 0] - left points[:, 1] = points[:, 1] - top ''' assert len(points) == 4, "shape of points must be 4*2" img_crop_width = int( max( np.linalg.norm(points[0] - points[1]), np.linalg.norm(points[2] - points[3]))) img_crop_height = int( max( np.linalg.norm(points[0] - points[3]), np.linalg.norm(points[1] - points[2]))) pts_std = np.float32([[0, 0], [img_crop_width, 0], [img_crop_width, img_crop_height], [0, img_crop_height]]) points = points.astype(np.float32) # print(points.shape, pts_std.shape) M = cv2.getPerspectiveTransform(points, pts_std) dst_img = cv2.warpPerspective( img, M, (img_crop_width, img_crop_height), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC) dst_img_height, dst_img_width = dst_img.shape[0:2] if dst_img_height * 1.0 / dst_img_width >= 1.5: dst_img = np.rot90(dst_img) return dst_img