You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

306 lines
10 KiB
C++

//
// Created by Jack Yu on 16/10/2017.
//
#include "../include/PlateSegmentation.h"
#include "../include/niBlackThreshold.h"
namespace pr {
PlateSegmentation::PlateSegmentation(std::string prototxt,
std::string caffemodel) {
net = cv::dnn::readNetFromCaffe(prototxt, caffemodel);
}
cv::Mat PlateSegmentation::classifyResponse(const cv::Mat &cropped) {
cv::Mat inputBlob = cv::dnn::blobFromImage(
cropped, 1 / 255.0, cv::Size(22, 22), cv::Scalar(0, 0, 0), false);
net.setInput(inputBlob, "data");
return net.forward();
}
void drawHist(float *seq, int size, const char *name) {
cv::Mat image(300, size, CV_8U);
image.setTo(0);
float *start = seq;
float *end = seq + size;
float l = *std::max_element(start, end);
for (int i = 0; i < size; i++) {
int p = int(float(seq[i]) / l * 300);
cv::line(image, cv::Point(i, 300), cv::Point(i, 300 - p),
cv::Scalar(255, 255, 255));
}
cv::resize(image, image, cv::Size(600, 100));
cv::imshow(name, image);
}
inline void computeSafeMargin(int &val, const int &rows) {
val = std::min(val, rows);
val = std::max(val, 0);
}
cv::Rect boxFromCenter(const cv::Point center, int left, int right, int top,
int bottom, cv::Size bdSize) {
cv::Point p1(center.x - left, center.y - top);
cv::Point p2(center.x + right, center.y + bottom);
p1.x = std::max(0, p1.x);
p1.y = std::max(0, p1.y);
p2.x = std::min(p2.x, bdSize.width - 1);
p2.y = std::min(p2.y, bdSize.height - 1);
cv::Rect rect(p1, p2);
return rect;
}
cv::Rect boxPadding(cv::Rect rect, int left, int right, int top, int bottom,
cv::Size bdSize) {
cv::Point center(rect.x + (rect.width >> 1), rect.y + (rect.height >> 1));
int rebuildLeft = (rect.width >> 1) + left;
int rebuildRight = (rect.width >> 1) + right;
int rebuildTop = (rect.height >> 1) + top;
int rebuildBottom = (rect.height >> 1) + bottom;
return boxFromCenter(center, rebuildLeft, rebuildRight, rebuildTop,
rebuildBottom, bdSize);
}
void PlateSegmentation::refineRegion(cv::Mat &plateImage,
const std::vector<int> &candidatePts,
const int padding,
std::vector<cv::Rect> &rects) {
int w = candidatePts[5] - candidatePts[4];
int cols = plateImage.cols;
int rows = plateImage.rows;
for (int i = 0; i < candidatePts.size(); i++) {
int left = 0;
int right = 0;
if (i == 0) {
left = candidatePts[i];
right = left + w + padding;
} else {
left = candidatePts[i] - padding;
right = left + w + padding * 2;
}
computeSafeMargin(right, cols);
computeSafeMargin(left, cols);
cv::Rect roi(left, 0, right - left, rows - 1);
cv::Mat roiImage;
plateImage(roi).copyTo(roiImage);
if (i >= 1) {
cv::Mat roi_thres;
// cv::threshold(roiImage,roi_thres,0,255,cv::THRESH_OTSU|cv::THRESH_BINARY);
niBlackThreshold(roiImage, roi_thres, 255, cv::THRESH_BINARY, 15, 0.27,
BINARIZATION_NIBLACK);
std::vector<std::vector<cv::Point>> contours;
cv::findContours(roi_thres, contours, cv::RETR_LIST,
cv::CHAIN_APPROX_SIMPLE);
cv::Point boxCenter(roiImage.cols >> 1, roiImage.rows >> 1);
cv::Rect final_bdbox;
cv::Point final_center;
int final_dist = INT_MAX;
for (auto contour : contours) {
cv::Rect bdbox = cv::boundingRect(contour);
cv::Point center(bdbox.x + (bdbox.width >> 1),
bdbox.y + (bdbox.height >> 1));
int dist = (center.x - boxCenter.x) * (center.x - boxCenter.x);
if (dist < final_dist and bdbox.height > rows >> 1) {
final_dist = dist;
final_center = center;
final_bdbox = bdbox;
}
}
// rebuild box
if (final_bdbox.height / static_cast<float>(final_bdbox.width) > 3.5 &&
final_bdbox.width * final_bdbox.height < 10)
final_bdbox = boxFromCenter(final_center, 8, 8, (rows >> 1) - 3,
(rows >> 1) - 2, roiImage.size());
else {
if (i == candidatePts.size() - 1)
final_bdbox = boxPadding(final_bdbox, padding / 2, padding,
padding / 2, padding / 2, roiImage.size());
else
final_bdbox = boxPadding(final_bdbox, padding, padding, padding,
padding, roiImage.size());
// std::cout<<final_bdbox<<std::endl;
// std::cout<<roiImage.size()<<std::endl;
#ifdef DEBUG
cv::imshow("char_thres", roi_thres);
cv::imshow("char", roiImage(final_bdbox));
cv::waitKey(0);
#endif
}
final_bdbox.x += left;
rects.push_back(final_bdbox);
//
} else {
rects.push_back(roi);
}
// else
// {
//
// }
// cv::GaussianBlur(roiImage,roiImage,cv::Size(7,7),3);
//
// cv::imshow("image",roiImage);
// cv::waitKey(0);
}
}
void avgfilter(float *angle_list, int size, int windowsSize) {
float *filterd = new float[size];
for (int i = 0; i < size; i++)
filterd[i] = angle_list[i];
// memcpy(filterd,angle_list,size);
cv::Mat kernal_gaussian = cv::getGaussianKernel(windowsSize, 3, CV_32F);
float *kernal = (float *)kernal_gaussian.data;
// kernal+=windowsSize;
int r = windowsSize / 2;
for (int i = 0; i < size; i++) {
float avg = 0.00f;
for (int j = 0; j < windowsSize; j++) {
if (i + j - r > 0 && i + j + r < size - 1)
avg += filterd[i + j - r] * kernal[j];
}
// avg = avg / windowsSize;
angle_list[i] = avg;
}
delete filterd;
}
void PlateSegmentation::templateMatchFinding(
const cv::Mat &respones, int windowsWidth,
std::pair<float, std::vector<int>> &candidatePts) {
int rows = respones.rows;
int cols = respones.cols;
float *data = (float *)respones.data;
float *engNum_prob = data;
float *false_prob = data + cols;
float *ch_prob = data + cols * 2;
avgfilter(engNum_prob, cols, 5);
avgfilter(false_prob, cols, 5);
std::vector<int> candidate_pts(7);
int cp_list[7];
float loss_selected = -10;
for (int start = 0; start < 20; start += 2)
for (int width = windowsWidth - 5; width < windowsWidth + 5; width++) {
for (int interval = windowsWidth / 2; interval < windowsWidth;
interval++) {
int cp1_ch = start;
int cp2_p0 = cp1_ch + width;
int cp3_p1 = cp2_p0 + width + interval;
int cp4_p2 = cp3_p1 + width;
int cp5_p3 = cp4_p2 + width + 1;
int cp6_p4 = cp5_p3 + width + 2;
int cp7_p5 = cp6_p4 + width + 2;
int md1 = (cp1_ch + cp2_p0) >> 1;
int md2 = (cp2_p0 + cp3_p1) >> 1;
int md3 = (cp3_p1 + cp4_p2) >> 1;
int md4 = (cp4_p2 + cp5_p3) >> 1;
int md5 = (cp5_p3 + cp6_p4) >> 1;
int md6 = (cp6_p4 + cp7_p5) >> 1;
if (cp7_p5 >= cols)
continue;
float loss =
ch_prob[cp1_ch] * 3 -
(false_prob[cp3_p1] + false_prob[cp4_p2] + false_prob[cp5_p3] +
false_prob[cp6_p4] + false_prob[cp7_p5]);
if (loss > loss_selected) {
loss_selected = loss;
cp_list[0] = cp1_ch;
cp_list[1] = cp2_p0;
cp_list[2] = cp3_p1;
cp_list[3] = cp4_p2;
cp_list[4] = cp5_p3;
cp_list[5] = cp6_p4;
cp_list[6] = cp7_p5;
}
}
}
candidate_pts[0] = cp_list[0];
candidate_pts[1] = cp_list[1];
candidate_pts[2] = cp_list[2];
candidate_pts[3] = cp_list[3];
candidate_pts[4] = cp_list[4];
candidate_pts[5] = cp_list[5];
candidate_pts[6] = cp_list[6];
candidatePts.first = loss_selected;
candidatePts.second = candidate_pts;
};
void PlateSegmentation::segmentPlateBySlidingWindows(cv::Mat &plateImage,
int windowsWidth,
int stride,
cv::Mat &respones) {
cv::Mat plateImageGray;
cv::cvtColor(plateImage, plateImageGray, cv::COLOR_BGR2GRAY);
int padding = plateImage.cols - 136;
int height = plateImage.rows - 1;
int width = plateImage.cols - 1 - padding;
for (int i = 0; i < width - windowsWidth + 1; i += stride) {
cv::Rect roi(i, 0, windowsWidth, height);
cv::Mat roiImage = plateImageGray(roi);
cv::Mat response = classifyResponse(roiImage);
respones.push_back(response);
}
respones = respones.t();
}
void PlateSegmentation::segmentPlatePipline(PlateInfo &plateInfo, int stride,
std::vector<cv::Rect> &Char_rects) {
cv::Mat plateImage = plateInfo.getPlateImage(); // get src image .
cv::Mat plateImageGray;
cv::cvtColor(plateImage, plateImageGray, cv::COLOR_BGR2GRAY);
// do binarzation
std::pair<float, std::vector<int>> sections; // segment points variables .
cv::Mat respones; // three response of every sub region from origin image .
segmentPlateBySlidingWindows(plateImage, DEFAULT_WIDTH, 1, respones);
templateMatchFinding(respones, DEFAULT_WIDTH / stride, sections);
for (int i = 0; i < sections.second.size(); i++) {
sections.second[i] *= stride;
}
refineRegion(plateImageGray, sections.second, 5, Char_rects);
}
void PlateSegmentation::ExtractRegions(PlateInfo &plateInfo,
std::vector<cv::Rect> &rects) {
cv::Mat plateImage = plateInfo.getPlateImage();
for (int i = 0; i < rects.size(); i++) {
cv::Mat charImage;
plateImage(rects[i]).copyTo(charImage);
if (charImage.channels())
cv::cvtColor(charImage, charImage, cv::COLOR_BGR2GRAY);
cv::equalizeHist(charImage, charImage);
std::pair<CharType, cv::Mat> char_instance;
if (i == 0) {
char_instance.first = CHINESE;
} else if (i == 1) {
char_instance.first = LETTER;
} else {
char_instance.first = LETTER_NUMS;
}
char_instance.second = charImage;
plateInfo.appendPlateChar(char_instance);
}
}
} // namespace pr