You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

185 lines
6.2 KiB
Python

import numpy as np
import cv2
import copy
from .base.base import HamburgerABC
def xywh2xyxy(boxes):
xywh = copy.deepcopy(boxes)
xywh[:, 0] = boxes[:, 0] - boxes[:, 2] / 2
xywh[:, 1] = boxes[:, 1] - boxes[:, 3] / 2
xywh[:, 2] = boxes[:, 0] + boxes[:, 2] / 2
xywh[:, 3] = boxes[:, 1] + boxes[:, 3] / 2
return xywh
def nms(boxes, iou_thresh): # nms
index = np.argsort(boxes[:, 4])[::-1]
keep = []
while index.size > 0:
i = index[0]
keep.append(i)
x1 = np.maximum(boxes[i, 0], boxes[index[1:], 0])
y1 = np.maximum(boxes[i, 1], boxes[index[1:], 1])
x2 = np.minimum(boxes[i, 2], boxes[index[1:], 2])
y2 = np.minimum(boxes[i, 3], boxes[index[1:], 3])
w = np.maximum(0, x2 - x1)
h = np.maximum(0, y2 - y1)
inter_area = w * h
union_area = (boxes[i, 2] - boxes[i, 0]) * (boxes[i, 3] - boxes[i, 1]) + (
boxes[index[1:], 2] - boxes[index[1:], 0]) * (boxes[index[1:], 3] - boxes[index[1:], 1])
iou = inter_area / (union_area - inter_area)
idx = np.where(iou <= iou_thresh)[0]
index = index[idx + 1]
return keep
def restore_box(boxes, r, left, top):
boxes[:, [0, 2, 5, 7, 9, 11]] -= left
boxes[:, [1, 3, 6, 8, 10, 12]] -= top
boxes[:, [0, 2, 5, 7, 9, 11]] /= r
boxes[:, [1, 3, 6, 8, 10, 12]] /= r
return boxes
def detect_pre_precessing(img, img_size):
img, r, left, top = letter_box(img, img_size)
img = img[:, :, ::-1].transpose(2, 0, 1).copy().astype(np.float32)
img = img / 255
img = img.reshape(1, *img.shape)
return img, r, left, top
def post_precessing(dets, r, left, top, conf_thresh=0.25, iou_thresh=0.5):
choice = dets[:, :, 4] > conf_thresh
dets = dets[choice]
dets[:, 13:15] *= dets[:, 4:5]
box = dets[:, :4]
boxes = xywh2xyxy(box)
score = np.max(dets[:, 13:15], axis=-1, keepdims=True)
index = np.argmax(dets[:, 13:15], axis=-1).reshape(-1, 1)
output = np.concatenate((boxes, score, dets[:, 5:13], index), axis=1)
reserve_ = nms(output, iou_thresh)
output = output[reserve_]
output = restore_box(output, r, left, top)
return output
def letter_box(img, size=(640, 640)):
h, w, c = img.shape
r = min(size[0] / h, size[1] / w)
new_h, new_w = int(h * r), int(w * r)
top = int((size[0] - new_h) / 2)
left = int((size[1] - new_w) / 2)
bottom = size[0] - new_h - top
right = size[1] - new_w - left
img_resize = cv2.resize(img, (new_w, new_h))
img = cv2.copyMakeBorder(img_resize, top, bottom, left, right, borderType=cv2.BORDER_CONSTANT,
value=(0, 0, 0))
return img, r, left, top
class MultiTaskDetectorMNN(HamburgerABC):
def __init__(self, mnn_path, box_threshold: float = 0.5, nms_threshold: float = 0.6, *args, **kwargs):
from hyperlpr3.common.mnn_adapt import MNNAdapter
super().__init__(*args, **kwargs)
assert self.input_size[0] == self.input_size[1]
self.box_threshold = box_threshold
self.nms_threshold = nms_threshold
self.input_shape = (1, 3, self.input_size[0], self.input_size[1])
if self.input_size[0] == 320:
self.tensor_shape = [(1, 6300, 15)]
elif self.input_size[0] == 640:
self.tensor_shape = [(1, 25200, 15)]
self.session = MNNAdapter(mnn_path, self.input_shape, outputs_name=['output', ],
outputs_shape=self.tensor_shape)
def _run_session(self, data):
outputs = self.session.inference(data)
result = list()
for idx, output in enumerate(outputs):
result.append(output.reshape(self.tensor_shape[idx]))
result = np.asarray(result)
return result[0]
def _postprocess(self, data):
r, left, top = self.tmp_pack
return post_precessing(data, r, left, top)
def _preprocess(self, image):
img, r, left, top = detect_pre_precessing(image, self.input_size)
self.tmp_pack = r, left, top
return img
class MultiTaskDetectorDNN(HamburgerABC):
def __init__(self, onnx_path, box_threshold: float = 0.5, nms_threshold: float = 0.6, *args, **kwargs):
super().__init__(*args, **kwargs)
self.box_threshold = box_threshold
self.nms_threshold = nms_threshold
self.session = cv2.dnn.readNetFromONNX(onnx_path)
self.input_shape = (1, 3, self.input_size[0], self.input_size[1])
self.tensor_shape = [(1, 6300, 15)]
def _run_session(self, data):
self.session.setInput(data)
outputs = self.session.forward()
return outputs
def _postprocess(self, data):
r, left, top = self.tmp_pack
return post_precessing(data, r, left, top)
def _preprocess(self, image):
img, r, left, top = detect_pre_precessing(image, self.input_size)
self.tmp_pack = r, left, top
return img
class MultiTaskDetectorORT(HamburgerABC):
def __init__(self, onnx_path, box_threshold: float = 0.5, nms_threshold: float = 0.6, *args, **kwargs):
super().__init__(*args, **kwargs)
import onnxruntime as ort
self.box_threshold = box_threshold
self.nms_threshold = nms_threshold
self.session = ort.InferenceSession(onnx_path, providers=['CPUExecutionProvider'])
self.inputs_option = self.session.get_inputs()
self.outputs_option = self.session.get_outputs()
input_option = self.inputs_option[0]
input_size_ = tuple(input_option.shape[2:])
self.input_size = tuple(self.input_size)
if not self.input_size:
self.input_size = input_size_
assert self.input_size == input_size_, 'The dimensions of the input do not match the model expectations.'
assert self.input_size[0] == self.input_size[1]
self.input_name = input_option.name
def _run_session(self, data):
result = self.session.run([self.outputs_option[0].name], {self.input_name: data})[0]
return result
def _postprocess(self, data):
r, left, top = self.tmp_pack
return post_precessing(data, r, left, top)
def _preprocess(self, image):
img, r, left, top = detect_pre_precessing(image, self.input_size)
self.tmp_pack = r, left, top
return img