You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

101 lines
3.8 KiB
C++

//
// Created by 庾金科 on 23/10/2017.
//
#include "Pipeline.h"
namespace pr {
const int HorizontalPadding = 4;
PipelinePR::PipelinePR(std::string detector_filename,
std::string finemapping_prototxt, std::string finemapping_caffemodel,
std::string segmentation_prototxt, std::string segmentation_caffemodel,
std::string charRecognization_proto, std::string charRecognization_caffemodel,
std::string segmentationfree_proto,std::string segmentationfree_caffemodel) {
plateDetection = new PlateDetection(detector_filename);
fineMapping = new FineMapping(finemapping_prototxt, finemapping_caffemodel);
plateSegmentation = new PlateSegmentation(segmentation_prototxt, segmentation_caffemodel);
generalRecognizer = new CNNRecognizer(charRecognization_proto, charRecognization_caffemodel);
segmentationFreeRecognizer = new SegmentationFreeRecognizer(segmentationfree_proto,segmentationfree_caffemodel);
}
PipelinePR::~PipelinePR() {
delete plateDetection;
delete fineMapping;
delete plateSegmentation;
delete generalRecognizer;
delete segmentationFreeRecognizer;
}
std::vector<PlateInfo> PipelinePR:: RunPiplineAsImage(cv::Mat plateImage,int method) {
std::vector<PlateInfo> results;
std::vector<pr::PlateInfo> plates;
plateDetection->plateDetectionRough(plateImage,plates,36,700);
for (pr::PlateInfo plateinfo:plates) {
cv::Mat image_finemapping = plateinfo.getPlateImage();
image_finemapping = fineMapping->FineMappingVertical(image_finemapping);
image_finemapping = pr::fastdeskew(image_finemapping, 5);
//Segmentation-based
if(method==SEGMENTATION_BASED_METHOD)
{
image_finemapping = fineMapping->FineMappingHorizon(image_finemapping, 2, HorizontalPadding);
cv::resize(image_finemapping, image_finemapping, cv::Size(136+HorizontalPadding, 36));
// cv::imshow("image_finemapping",image_finemapping);
// cv::waitKey(0);
plateinfo.setPlateImage(image_finemapping);
std::vector<cv::Rect> rects;
plateSegmentation->segmentPlatePipline(plateinfo, 1, rects);
plateSegmentation->ExtractRegions(plateinfo, rects);
cv::copyMakeBorder(image_finemapping, image_finemapping, 0, 0, 0, 20, cv::BORDER_REPLICATE);
plateinfo.setPlateImage(image_finemapping);
generalRecognizer->SegmentBasedSequenceRecognition(plateinfo);
plateinfo.decodePlateNormal(pr::CH_PLATE_CODE);
}
//Segmentation-free
else if(method==SEGMENTATION_FREE_METHOD)
{
image_finemapping = fineMapping->FineMappingHorizon(image_finemapping, 4, HorizontalPadding+3);
cv::resize(image_finemapping, image_finemapping, cv::Size(136+HorizontalPadding, 36));
// cv::imwrite("./test.png",image_finemapping);
// cv::imshow("image_finemapping",image_finemapping);
// cv::waitKey(0);
plateinfo.setPlateImage(image_finemapping);
// std::vector<cv::Rect> rects;
std::pair<std::string,float> res = segmentationFreeRecognizer->SegmentationFreeForSinglePlate(plateinfo.getPlateImage(),pr::CH_PLATE_CODE);
plateinfo.confidence = res.second;
plateinfo.setPlateName(res.first);
}
results.push_back(plateinfo);
}
// for (auto str:results) {
// std::cout << str << std::endl;
// }
return results;
}//namespace pr
}