You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
6.8 KiB
Python
156 lines
6.8 KiB
Python
#coding=utf-8
|
|
import cv2
|
|
import numpy as np
|
|
from keras import backend as K
|
|
from keras.models import *
|
|
from keras.layers import *
|
|
|
|
chars = [u"京", u"沪", u"津", u"渝", u"冀", u"晋", u"蒙", u"辽", u"吉", u"黑", u"苏", u"浙", u"皖", u"闽", u"赣", u"鲁", u"豫", u"鄂", u"湘", u"粤", u"桂",
|
|
u"琼", u"川", u"贵", u"云", u"藏", u"陕", u"甘", u"青", u"宁", u"新", u"0", u"1", u"2", u"3", u"4", u"5", u"6", u"7", u"8", u"9", u"A",
|
|
u"B", u"C", u"D", u"E", u"F", u"G", u"H", u"J", u"K", u"L", u"M", u"N", u"P", u"Q", u"R", u"S", u"T", u"U", u"V", u"W", u"X",
|
|
u"Y", u"Z",u"港",u"学",u"使",u"警",u"澳",u"挂",u"军",u"北",u"南",u"广",u"沈",u"兰",u"成",u"济",u"海",u"民",u"航",u"空"
|
|
]
|
|
|
|
class LPR():
|
|
def __init__(self,model_detection,model_finemapping,model_seq_rec):
|
|
self.watch_cascade = cv2.CascadeClassifier(model_detection)
|
|
self.modelFineMapping = self.model_finemapping()
|
|
self.modelFineMapping.load_weights(model_finemapping)
|
|
self.modelSeqRec = self.model_seq_rec(model_seq_rec)
|
|
|
|
def computeSafeRegion(self,shape,bounding_rect):
|
|
top = bounding_rect[1] # y
|
|
bottom = bounding_rect[1] + bounding_rect[3] # y + h
|
|
left = bounding_rect[0] # x
|
|
right = bounding_rect[0] + bounding_rect[2] # x + w
|
|
min_top = 0
|
|
max_bottom = shape[0]
|
|
min_left = 0
|
|
max_right = shape[1]
|
|
if top < min_top:
|
|
top = min_top
|
|
if left < min_left:
|
|
left = min_left
|
|
if bottom > max_bottom:
|
|
bottom = max_bottom
|
|
if right > max_right:
|
|
right = max_right
|
|
return [left,top,right-left,bottom-top]
|
|
|
|
def cropImage(self,image,rect):
|
|
x, y, w, h = self.computeSafeRegion(image.shape,rect)
|
|
return image[y:y+h,x:x+w]
|
|
|
|
def detectPlateRough(self,image_gray,resize_h = 720,en_scale =1.08 ,top_bottom_padding_rate = 0.05):
|
|
if top_bottom_padding_rate>0.2:
|
|
print("error:top_bottom_padding_rate > 0.2:",top_bottom_padding_rate)
|
|
exit(1)
|
|
height = image_gray.shape[0]
|
|
padding = int(height*top_bottom_padding_rate)
|
|
scale = image_gray.shape[1]/float(image_gray.shape[0])
|
|
image = cv2.resize(image_gray, (int(scale*resize_h), resize_h))
|
|
image_color_cropped = image[padding:resize_h-padding,0:image_gray.shape[1]]
|
|
image_gray = cv2.cvtColor(image_color_cropped,cv2.COLOR_RGB2GRAY)
|
|
watches = self.watch_cascade.detectMultiScale(image_gray, en_scale, 2, minSize=(36, 9),maxSize=(36*40, 9*40))
|
|
cropped_images = []
|
|
for (x, y, w, h) in watches:
|
|
x -= w * 0.14
|
|
w += w * 0.28
|
|
y -= h * 0.15
|
|
h += h * 0.3
|
|
cropped = self.cropImage(image_color_cropped, (int(x), int(y), int(w), int(h)))
|
|
cropped_images.append([cropped,[x, y+padding, w, h]])
|
|
return cropped_images
|
|
|
|
def fastdecode(self,y_pred):
|
|
results = ""
|
|
confidence = 0.0
|
|
table_pred = y_pred.reshape(-1, len(chars)+1)
|
|
res = table_pred.argmax(axis=1)
|
|
for i,one in enumerate(res):
|
|
if one<len(chars) and (i==0 or (one!=res[i-1])):
|
|
results+= chars[one]
|
|
confidence+=table_pred[i][one]
|
|
confidence/= len(results)
|
|
return results,confidence
|
|
|
|
def model_seq_rec(self,model_path):
|
|
width, height, n_len, n_class = 164, 48, 7, len(chars)+ 1
|
|
rnn_size = 256
|
|
input_tensor = Input((164, 48, 3))
|
|
x = input_tensor
|
|
base_conv = 32
|
|
for i in range(3):
|
|
x = Conv2D(base_conv * (2 ** (i)), (3, 3))(x)
|
|
x = BatchNormalization()(x)
|
|
x = Activation('relu')(x)
|
|
x = MaxPooling2D(pool_size=(2, 2))(x)
|
|
conv_shape = x.get_shape()
|
|
x = Reshape(target_shape=(int(conv_shape[1]), int(conv_shape[2] * conv_shape[3])))(x)
|
|
x = Dense(32)(x)
|
|
x = BatchNormalization()(x)
|
|
x = Activation('relu')(x)
|
|
gru_1 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru1')(x)
|
|
gru_1b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru1_b')(x)
|
|
gru1_merged = add([gru_1, gru_1b])
|
|
gru_2 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru2')(gru1_merged)
|
|
gru_2b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru2_b')(gru1_merged)
|
|
x = concatenate([gru_2, gru_2b])
|
|
x = Dropout(0.25)(x)
|
|
x = Dense(n_class, kernel_initializer='he_normal', activation='softmax')(x)
|
|
base_model = Model(inputs=input_tensor, outputs=x)
|
|
base_model.load_weights(model_path)
|
|
return base_model
|
|
|
|
def model_finemapping(self):
|
|
input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input
|
|
x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input)
|
|
x = Activation("relu", name='relu1')(x)
|
|
x = MaxPool2D(pool_size=2)(x)
|
|
x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x)
|
|
x = Activation("relu", name='relu2')(x)
|
|
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x)
|
|
x = Activation("relu", name='relu3')(x)
|
|
x = Flatten()(x)
|
|
output = Dense(2,name = "dense")(x)
|
|
output = Activation("relu", name='relu4')(output)
|
|
model = Model([input], [output])
|
|
return model
|
|
|
|
def finemappingVertical(self,image,rect):
|
|
resized = cv2.resize(image,(66,16))
|
|
resized = resized.astype(np.float)/255
|
|
res_raw= self.modelFineMapping.predict(np.array([resized]))[0]
|
|
res =res_raw*image.shape[1]
|
|
res = res.astype(np.int)
|
|
H,T = res
|
|
H-=3
|
|
if H<0:
|
|
H=0
|
|
T+=2;
|
|
if T>= image.shape[1]-1:
|
|
T= image.shape[1]-1
|
|
rect[2] -= rect[2]*(1-res_raw[1] + res_raw[0])
|
|
rect[0]+=res[0]
|
|
image = image[:,H:T+2]
|
|
image = cv2.resize(image, (int(136), int(36)))
|
|
return image,rect
|
|
|
|
def recognizeOne(self,src):
|
|
x_tempx = src
|
|
x_temp = cv2.resize(x_tempx,( 164,48))
|
|
x_temp = x_temp.transpose(1, 0, 2)
|
|
y_pred = self.modelSeqRec.predict(np.array([x_temp]))
|
|
y_pred = y_pred[:,2:,:]
|
|
return self.fastdecode(y_pred)
|
|
|
|
def SimpleRecognizePlateByE2E(self,image):
|
|
images = self.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1)
|
|
res_set = []
|
|
for j,plate in enumerate(images):
|
|
plate, rect =plate
|
|
image_rgb,rect_refine = self.finemappingVertical(plate,rect)
|
|
res,confidence = self.recognizeOne(image_rgb)
|
|
res_set.append([res,confidence,rect_refine])
|
|
return res_set
|