You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

37 lines
1.3 KiB
Python

#coding=utf-8
from keras.layers import Conv2D, Input,MaxPool2D, Reshape,Activation,Flatten, Dense
from keras.models import Model, Sequential
from keras.layers.advanced_activations import PReLU
from keras.optimizers import adam
import numpy as np
import cv2
def getModel():
input = Input(shape=[12, 50, 3]) # change this shape to [None,None,3] to enable arbitraty shape input
x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input)
x = PReLU(shared_axes=[1, 2], name='prelu1')(x)
x = MaxPool2D(pool_size=2)(x)
x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x)
x = PReLU(shared_axes=[1, 2], name='prelu2')(x)
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x)
x = PReLU(shared_axes=[1, 2], name='prelu3')(x)
x = Flatten()(x)
output = Dense(2)(x)
output = PReLU(name='prelu4')(output)
model = Model([input], [output])
return model
model = getModel()
model.load_weights("./model/model12.h5")
def finemappingVertical(image):
resized = cv2.resize(image,(50,12))
resized = resized.astype(np.float)/255
res= model.predict(np.array([resized]))[0]
res =res*image.shape[1]
res = res.astype(np.int)
image = image[0:35,res[0]+4:res[1]]
image = cv2.resize(image, (int(136), int(36)))
return image