You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

110 lines
4.0 KiB
C++

//
// Created by 庾金科 on 26/10/2017.
//
#ifndef SWIFTPR_NIBLACKTHRESHOLD_H
#define SWIFTPR_NIBLACKTHRESHOLD_H
#include <opencv2/opencv.hpp>
using namespace cv;
enum LocalBinarizationMethods{
BINARIZATION_NIBLACK = 0, //!< Classic Niblack binarization. See @cite Niblack1985 .
BINARIZATION_SAUVOLA = 1, //!< Sauvola's technique. See @cite Sauvola1997 .
BINARIZATION_WOLF = 2, //!< Wolf's technique. See @cite Wolf2004 .
BINARIZATION_NICK = 3 //!< NICK technique. See @cite Khurshid2009 .
};
void niBlackThreshold( InputArray _src, OutputArray _dst, double maxValue,
int type, int blockSize, double k, int binarizationMethod )
{
// Input grayscale image
Mat src = _src.getMat();
CV_Assert(src.channels() == 1);
CV_Assert(blockSize % 2 == 1 && blockSize > 1);
if (binarizationMethod == BINARIZATION_SAUVOLA) {
CV_Assert(src.depth() == CV_8U);
}
type &= THRESH_MASK;
// Compute local threshold (T = mean + k * stddev)
// using mean and standard deviation in the neighborhood of each pixel
// (intermediate calculations are done with floating-point precision)
Mat test;
Mat thresh;
{
// note that: Var[X] = E[X^2] - E[X]^2
Mat mean, sqmean, variance, stddev, sqrtVarianceMeanSum;
double srcMin, stddevMax;
boxFilter(src, mean, CV_32F, Size(blockSize, blockSize),
Point(-1,-1), true, BORDER_REPLICATE);
sqrBoxFilter(src, sqmean, CV_32F, Size(blockSize, blockSize),
Point(-1,-1), true, BORDER_REPLICATE);
variance = sqmean - mean.mul(mean);
sqrt(variance, stddev);
switch (binarizationMethod)
{
case BINARIZATION_NIBLACK:
thresh = mean + stddev * static_cast<float>(k);
break;
case BINARIZATION_SAUVOLA:
thresh = mean.mul(1. + static_cast<float>(k) * (stddev / 128.0 - 1.));
break;
case BINARIZATION_WOLF:
minMaxIdx(src, &srcMin,NULL);
minMaxIdx(stddev, NULL, &stddevMax);
thresh = mean - static_cast<float>(k) * (mean - srcMin - stddev.mul(mean - srcMin) / stddevMax);
break;
case BINARIZATION_NICK:
sqrt(variance + sqmean, sqrtVarianceMeanSum);
thresh = mean + static_cast<float>(k) * sqrtVarianceMeanSum;
break;
default:
// CV_Error( CV_StsBadArg, "Unknown binarization method" );
CV_Error(-5, "Unknown binarization method");
break;
}
thresh.convertTo(thresh, src.depth());
thresh.convertTo(test, src.depth());
//
// cv::imshow("imagex",test);
// cv::waitKey(0);
}
// Prepare output image
_dst.create(src.size(), src.type());
Mat dst = _dst.getMat();
CV_Assert(src.data != dst.data); // no inplace processing
// Apply thresholding: ( pixel > threshold ) ? foreground : background
Mat mask;
switch (type)
{
case THRESH_BINARY: // dst = (src > thresh) ? maxval : 0
case THRESH_BINARY_INV: // dst = (src > thresh) ? 0 : maxval
compare(src, thresh, mask, (type == THRESH_BINARY ? CMP_GT : CMP_LE));
dst.setTo(0);
dst.setTo(maxValue, mask);
break;
case THRESH_TRUNC: // dst = (src > thresh) ? thresh : src
compare(src, thresh, mask, CMP_GT);
src.copyTo(dst);
thresh.copyTo(dst, mask);
break;
case THRESH_TOZERO: // dst = (src > thresh) ? src : 0
case THRESH_TOZERO_INV: // dst = (src > thresh) ? 0 : src
compare(src, thresh, mask, (type == THRESH_TOZERO ? CMP_GT : CMP_LE));
dst.setTo(0);
src.copyTo(dst, mask);
break;
default:
// CV_Error( CV_StsBadArg, "Unknown threshold type" );
CV_Error(-5, "Unknown threshold type");
break;
}
}
#endif //SWIFTPR_NIBLACKTHRESHOLD_H