You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

206 lines
7.7 KiB
C++

//
// Created by 庾金科 on 22/09/2017.
//
#include "FineMapping.h"
namespace pr{
const int FINEMAPPING_H = 60 ;
const int FINEMAPPING_W = 140;
const int PADDING_UP_DOWN = 30;
void drawRect(cv::Mat image,cv::Rect rect)
{
cv::Point p1(rect.x,rect.y);
cv::Point p2(rect.x+rect.width,rect.y+rect.height);
cv::rectangle(image,p1,p2,cv::Scalar(0,255,0),1);
}
FineMapping::FineMapping(std::string prototxt,std::string caffemodel) {
net = cv::dnn::readNetFromCaffe(prototxt, caffemodel);
}
cv::Mat FineMapping::FineMappingHorizon(cv::Mat FinedVertical,int leftPadding,int rightPadding)
{
// if(FinedVertical.channels()==1)
// cv::cvtColor(FinedVertical,FinedVertical,cv::COLOR_GRAY2BGR);
cv::Mat inputBlob = cv::dnn::blobFromImage(FinedVertical, 1/255.0, cv::Size(66,16),
cv::Scalar(0,0,0),false);
net.setInput(inputBlob,"data");
cv::Mat prob = net.forward();
int front = static_cast<int>(prob.at<float>(0,0)*FinedVertical.cols);
int back = static_cast<int>(prob.at<float>(0,1)*FinedVertical.cols);
front -= leftPadding ;
if(front<0) front = 0;
back +=rightPadding;
if(back>FinedVertical.cols-1) back=FinedVertical.cols - 1;
cv::Mat cropped = FinedVertical.colRange(front,back).clone();
return cropped;
}
std::pair<int,int> FitLineRansac(std::vector<cv::Point> pts,int zeroadd = 0 )
{
std::pair<int,int> res;
if(pts.size()>2)
{
cv::Vec4f line;
cv::fitLine(pts,line,cv::DIST_HUBER,0,0.01,0.01);
float vx = line[0];
float vy = line[1];
float x = line[2];
float y = line[3];
int lefty = static_cast<int>((-x * vy / vx) + y);
int righty = static_cast<int>(((136- x) * vy / vx) + y);
res.first = lefty+PADDING_UP_DOWN+zeroadd;
res.second = righty+PADDING_UP_DOWN+zeroadd;
return res;
}
res.first = zeroadd;
res.second = zeroadd;
return res;
}
cv::Mat FineMapping::FineMappingVertical(cv::Mat InputProposal,int sliceNum,int upper,int lower,int windows_size){
cv::Mat PreInputProposal;
cv::Mat proposal;
cv::resize(InputProposal,PreInputProposal,cv::Size(FINEMAPPING_W,FINEMAPPING_H));
// cv::imwrite("res/cache/finemapping.jpg",PreInputProposal);
if(InputProposal.channels() == 3)
cv::cvtColor(PreInputProposal,proposal,cv::COLOR_BGR2GRAY);
else
PreInputProposal.copyTo(proposal);
// proposal = PreInputProposal;
// this will improve some sen
cv::Mat kernal = cv::getStructuringElement(cv::MORPH_ELLIPSE,cv::Size(1,3));
// cv::erode(proposal,proposal,kernal);
float diff = static_cast<float>(upper-lower);
diff/=static_cast<float>(sliceNum-1);
cv::Mat binary_adaptive;
std::vector<cv::Point> line_upper;
std::vector<cv::Point> line_lower;
int contours_nums=0;
for(int i = 0 ; i < sliceNum ; i++)
{
std::vector<std::vector<cv::Point> > contours;
float k =lower + i*diff;
cv::adaptiveThreshold(proposal,binary_adaptive,255,cv::ADAPTIVE_THRESH_MEAN_C,cv::THRESH_BINARY,windows_size,k);
cv::Mat draw;
binary_adaptive.copyTo(draw);
cv::findContours(binary_adaptive,contours,cv::RETR_EXTERNAL,cv::CHAIN_APPROX_SIMPLE);
for(auto contour: contours)
{
cv::Rect bdbox =cv::boundingRect(contour);
float lwRatio = bdbox.height/static_cast<float>(bdbox.width);
int bdboxAera = bdbox.width*bdbox.height;
if (( lwRatio>0.7&&bdbox.width*bdbox.height>100 && bdboxAera<300)
|| (lwRatio>3.0 && bdboxAera<100 && bdboxAera>10))
{
cv::Point p1(bdbox.x, bdbox.y);
cv::Point p2(bdbox.x + bdbox.width, bdbox.y + bdbox.height);
line_upper.push_back(p1);
line_lower.push_back(p2);
contours_nums+=1;
}
}
}
if(contours_nums<41)
{
cv::bitwise_not(InputProposal,InputProposal);
cv::Mat kernal = cv::getStructuringElement(cv::MORPH_ELLIPSE,cv::Size(1,5));
cv::Mat bak;
cv::resize(InputProposal,bak,cv::Size(FINEMAPPING_W,FINEMAPPING_H));
cv::erode(bak,bak,kernal);
if(InputProposal.channels() == 3)
cv::cvtColor(bak,proposal,cv::COLOR_BGR2GRAY);
else
proposal = bak;
int contours_nums=0;
for(int i = 0 ; i < sliceNum ; i++)
{
std::vector<std::vector<cv::Point> > contours;
float k =lower + i*diff;
cv::adaptiveThreshold(proposal,binary_adaptive,255,cv::ADAPTIVE_THRESH_MEAN_C,cv::THRESH_BINARY,windows_size,k);
// cv::imshow("image",binary_adaptive);
// cv::waitKey(0);
cv::Mat draw;
binary_adaptive.copyTo(draw);
cv::findContours(binary_adaptive,contours,cv::RETR_EXTERNAL,cv::CHAIN_APPROX_SIMPLE);
for(auto contour: contours)
{
cv::Rect bdbox =cv::boundingRect(contour);
float lwRatio = bdbox.height/static_cast<float>(bdbox.width);
int bdboxAera = bdbox.width*bdbox.height;
if (( lwRatio>0.7&&bdbox.width*bdbox.height>120 && bdboxAera<300)
|| (lwRatio>3.0 && bdboxAera<100 && bdboxAera>10))
{
cv::Point p1(bdbox.x, bdbox.y);
cv::Point p2(bdbox.x + bdbox.width, bdbox.y + bdbox.height);
line_upper.push_back(p1);
line_lower.push_back(p2);
contours_nums+=1;
}
}
}
// std:: cout<<"contours_nums "<<contours_nums<<std::endl;
}
cv::Mat rgb;
cv::copyMakeBorder(PreInputProposal, rgb, PADDING_UP_DOWN, PADDING_UP_DOWN, 0, 0, cv::BORDER_REPLICATE);
// cv::imshow("rgb",rgb);
// cv::waitKey(0);
//
std::pair<int, int> A;
std::pair<int, int> B;
A = FitLineRansac(line_upper, -1);
B = FitLineRansac(line_lower, 1);
int leftyB = A.first;
int rightyB = A.second;
int leftyA = B.first;
int rightyA = B.second;
int cols = rgb.cols;
int rows = rgb.rows;
// pts_map1 = np.float32([[cols - 1, rightyA], [0, leftyA],[cols - 1, rightyB], [0, leftyB]])
// pts_map2 = np.float32([[136,36],[0,36],[136,0],[0,0]])
// mat = cv2.getPerspectiveTransform(pts_map1,pts_map2)
// image = cv2.warpPerspective(rgb,mat,(136,36),flags=cv2.INTER_CUBIC)
std::vector<cv::Point2f> corners(4);
corners[0] = cv::Point2f(cols - 1, rightyA);
corners[1] = cv::Point2f(0, leftyA);
corners[2] = cv::Point2f(cols - 1, rightyB);
corners[3] = cv::Point2f(0, leftyB);
std::vector<cv::Point2f> corners_trans(4);
corners_trans[0] = cv::Point2f(136, 36);
corners_trans[1] = cv::Point2f(0, 36);
corners_trans[2] = cv::Point2f(136, 0);
corners_trans[3] = cv::Point2f(0, 0);
cv::Mat transform = cv::getPerspectiveTransform(corners, corners_trans);
cv::Mat quad = cv::Mat::zeros(36, 136, CV_8UC3);
cv::warpPerspective(rgb, quad, transform, quad.size());
return quad;
}
}