You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
199 lines
5.8 KiB
C++
199 lines
5.8 KiB
C++
//
|
|
// Created by 庾金科 on 23/10/2017.
|
|
//
|
|
|
|
#include "../include/Pipeline.h"
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
template<class T>
|
|
static unsigned int levenshtein_distance(const T &s1, const T &s2) {
|
|
const size_t len1 = s1.size(), len2 = s2.size();
|
|
std::vector<unsigned int> col(len2 + 1), prevCol(len2 + 1);
|
|
|
|
for (unsigned int i = 0; i < prevCol.size(); i++) prevCol[i] = i;
|
|
for (unsigned int i = 0; i < len1; i++) {
|
|
col[0] = i + 1;
|
|
for (unsigned int j = 0; j < len2; j++)
|
|
col[j + 1] = min(
|
|
min(prevCol[1 + j] + 1, col[j] + 1),
|
|
prevCol[j] + (s1[i] == s2[j] ? 0 : 1));
|
|
col.swap(prevCol);
|
|
}
|
|
return prevCol[len2];
|
|
}
|
|
|
|
|
|
|
|
|
|
void TEST_ACC(){
|
|
|
|
pr::PipelinePR prc("model/cascade.xml",
|
|
"model/HorizonalFinemapping.prototxt","model/HorizonalFinemapping.caffemodel",
|
|
"model/Segmentation.prototxt","model/Segmentation.caffemodel",
|
|
"model/CharacterRecognization.prototxt","model/CharacterRecognization.caffemodel",
|
|
"model/SegmenationFree-Inception.prototxt","model/SegmenationFree-Inception.caffemodel"
|
|
);
|
|
|
|
ifstream file;
|
|
string imagename;
|
|
int n = 0,correct = 0,j = 0,sum = 0;
|
|
char filename[] = "/Users/yujinke/Downloads/general_test/1.txt";
|
|
string pathh = "/Users/yujinke/Downloads/general_test/";
|
|
file.open(filename, ios::in);
|
|
while (!file.eof())
|
|
{
|
|
file >> imagename;
|
|
string imgpath = pathh + imagename;
|
|
std::cout << "------------------------------------------------" << endl;
|
|
cout << "图片名:" << imagename << endl;
|
|
cv::Mat image = cv::imread(imgpath);
|
|
// cv::imshow("image", image);
|
|
// cv::waitKey(0);
|
|
|
|
std::vector<pr::PlateInfo> res = prc.RunPiplineAsImage(image,pr::SEGMENTATION_FREE_METHOD);
|
|
|
|
float conf = 0;
|
|
vector<float> con ;
|
|
vector<string> name;
|
|
for (auto st : res) {
|
|
if (st.confidence > 0.1) {
|
|
//std::cout << st.getPlateName() << " " << st.confidence << std::endl;
|
|
con.push_back(st.confidence);
|
|
name.push_back(st.getPlateName());
|
|
//conf += st.confidence;
|
|
}
|
|
else
|
|
cout << "no string" << endl;
|
|
}
|
|
// std::cout << conf << std::endl;
|
|
int num = con.size();
|
|
float max = 0;
|
|
string platestr, chpr, ch;
|
|
int diff = 0,dif = 0;
|
|
for (int i = 0; i < num; i++) {
|
|
|
|
if (con.at(i) > max)
|
|
{
|
|
max = con.at(i);
|
|
platestr = name.at(i);
|
|
}
|
|
|
|
}
|
|
// cout << "max:"<<max << endl;
|
|
cout << "string:" << platestr << endl;
|
|
chpr = platestr.substr(0, 2);
|
|
ch = imagename.substr(0, 2);
|
|
diff = levenshtein_distance(imagename, platestr);
|
|
dif = diff - 4;
|
|
cout << "差距:" <<dif << endl;
|
|
sum += dif;
|
|
if (ch != chpr) n++;
|
|
if (diff == 0) correct++;
|
|
j++;
|
|
}
|
|
float cha = 1 - float(n) / float(j);
|
|
std::cout << "------------------------------------------------" << endl;
|
|
cout << "车牌总数:" << j << endl;
|
|
cout << "汉字识别准确率:"<<cha << endl;
|
|
float chaccuracy = 1 - float(sum - n * 2) /float(j * 8);
|
|
cout << "字符识别准确率:" << chaccuracy << endl;
|
|
|
|
}
|
|
|
|
|
|
void TEST_PIPELINE(){
|
|
|
|
pr::PipelinePR prc("model/cascade.xml",
|
|
"model/HorizonalFinemapping.prototxt","model/HorizonalFinemapping.caffemodel",
|
|
"model/Segmentation.prototxt","model/Segmentation.caffemodel",
|
|
"model/CharacterRecognization.prototxt","model/CharacterRecognization.caffemodel",
|
|
"model/SegmentationFree.prototxt","model/SegmentationFree.caffemodel"
|
|
);
|
|
|
|
cv::Mat image = cv::imread("/Users/yujinke/ClionProjects/cpp_ocr_demo/test.png");
|
|
|
|
|
|
std::vector<pr::PlateInfo> res = prc.RunPiplineAsImage(image,pr::SEGMENTATION_FREE_METHOD);
|
|
|
|
for(auto st:res) {
|
|
if(st.confidence>0.75) {
|
|
std::cout << st.getPlateName() << " " << st.confidence << std::endl;
|
|
cv::Rect region = st.getPlateRect();
|
|
|
|
cv::rectangle(image,cv::Point(region.x,region.y),cv::Point(region.x+region.width,region.y+region.height),cv::Scalar(255,255,0),2);
|
|
}
|
|
}
|
|
|
|
cv::imshow("image",image);
|
|
cv::waitKey(0);
|
|
|
|
}
|
|
|
|
|
|
void TEST_CAM()
|
|
{
|
|
|
|
cv::VideoCapture capture("test1.mp4");
|
|
cv::Mat frame;
|
|
|
|
pr::PipelinePR prc("model/cascade.xml",
|
|
"model/HorizonalFinemapping.prototxt","model/HorizonalFinemapping.caffemodel",
|
|
"model/Segmentation.prototxt","model/Segmentation.caffemodel",
|
|
"model/CharacterRecognization.prototxt","model/CharacterRecognization.caffemodel",
|
|
"model/SegmentationFree.prototxt","model/SegmentationFree.caffemodel"
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
while(1) {
|
|
//读取下一帧
|
|
if (!capture.read(frame)) {
|
|
std::cout << "读取视频失败" << std::endl;
|
|
exit(1);
|
|
}
|
|
//
|
|
// cv::transpose(frame,frame);
|
|
// cv::flip(frame,frame,2);
|
|
|
|
// cv::resize(frame,frame,cv::Size(frame.cols/2,frame.rows/2));
|
|
|
|
|
|
|
|
std::vector<pr::PlateInfo> res = prc.RunPiplineAsImage(frame,pr::SEGMENTATION_FREE_METHOD);
|
|
|
|
for(auto st:res) {
|
|
if(st.confidence>0.75) {
|
|
std::cout << st.getPlateName() << " " << st.confidence << std::endl;
|
|
cv::Rect region = st.getPlateRect();
|
|
|
|
cv::rectangle(frame,cv::Point(region.x,region.y),cv::Point(region.x+region.width,region.y+region.height),cv::Scalar(255,255,0),2);
|
|
}
|
|
}
|
|
|
|
cv::imshow("image",frame);
|
|
cv::waitKey(1);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
int main()
|
|
{
|
|
TEST_ACC();
|
|
|
|
// TEST_CAM();
|
|
// TEST_PIPELINE();
|
|
|
|
return 0 ;
|
|
|
|
|
|
} |